Skip to main content
Log in

Impact of gold-1-decanethiol-SAM formation and removal cycles on the surface properties of polycrystalline gold and SAM quality

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The impact of 1-decanethiol self-assembled monolayer (SAM) formation and removal cycles on polycrystalline Au surfaces and SAM quality was studied with the help of CV, DPV, Pb-UPD, STM, and AFM. The SAM removal was accomplished by dissolution with oxygen radicals generated by UV photolysis of aqueous hydrogen peroxide. During the first Au-SAM formation and removal cycles, the surface roughness decreased. After that, the surface properties remained almost unaffected, indicating that the cyclic treatment removed the most reactive gold surface sites, until a rather stable surface resulted, which guaranteed highly reproducible SAM formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554. https://doi.org/10.1021/cr9502357

    Article  CAS  Google Scholar 

  2. Laibinis PE, Whitesides GM (1992) Self-assembled monolayers of n-alkanethiols on copper are barrier films that protect the metal oxidation by air. Am Chem Soc 114(23):9022–9028. https://doi.org/10.1021/ja00049a038

    Article  CAS  Google Scholar 

  3. Häkkinen HJ (2012) The gold–sulfur interface at the nanoscale. Nat Chem 4(6):443–455. https://doi.org/10.1038/nchem.1352

    Article  Google Scholar 

  4. Azzam W, Al-Momani L (2013) A new striped-phase of decanethiol self-assembled monolayers on Au(111) formed at a high solution temperature. Appl Surf Sci 266:239–244. https://doi.org/10.1016/j.apsusc.2012.11.162

    Article  CAS  Google Scholar 

  5. Poirier GE, Pylantt ED (1996) The self-assembly mechanism of alkanethiols on Au (111). Science 272(5265):1145–1148. https://doi.org/10.1126/science.272.5265.1145

    Article  CAS  Google Scholar 

  6. Camillone N, Leung TYB, Schwartz P, Eisenberger P, Scoles G (1996) Chain length dependence of the striped phases of alkanethiol monolayers self-assembled on Au(111): an atomic beam diffraction study. Langmuir 12(11):2737–2746. https://doi.org/10.1021/la951097j

    Article  CAS  Google Scholar 

  7. Uehara TM, De Aguiar HB, Bergamaski K, Miranda PB, De Sa U (2014) Adsorption of alkylthiol self-assembled monolayers on gold and the effect of substrate roughness: a comparative study using scanning tunneling microscopy, cyclic voltammetry, second-harmonic generation, and sum-frequency generation. J Phys Chem C 118(35):20374–20382. https://doi.org/10.1021/jp5054919

    Article  CAS  Google Scholar 

  8. Hoogvliet JC, Dijksma M, Kamp B, van Bennekom WP (2000) Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self-assembly: a study in phosphate buffer pH 7.4. Anal Chem 72(9):2016–2021. https://doi.org/10.1021/ac991215y

    Article  CAS  Google Scholar 

  9. Tkac J, Davis JJ (2008) An optimized electrode pre-treatment for SAM formation on polycrystalline gold. J Electroanal Chem 621(1):117–120. https://doi.org/10.1016/j.jelechem.2008.04.010

    Article  CAS  Google Scholar 

  10. Poirier GE (1997) Mechanism of formation of Au vacancy islands in alkanethiol monolayers on Au (111). Langmuir 10:2019–2026

    Article  Google Scholar 

  11. Wilbur, James; Whitesides GM (1999) Self-assembly and self-assembled monolayers in micro- and nanofabrication. In: Nanotechnology. Springer Science and Business Media New York, New York

  12. Scholz F, López de Lara González G, Machado de Carvalho L, Hilgemann M, Brainina KZ, Kahlert H, Jack RS, Minh DT (2007) Indirect electrochemical sensing of radicals and radical scavengers in biological matrices. Angew Chem Int Ed Engl 46(42):8079–8081. https://doi.org/10.1002/anie.200702690

    Article  CAS  Google Scholar 

  13. Hilgemann M, Scholz F, Kahlert H, de Carvalho LM, da Rosa MB, Lindequist U, Wurster M, do Nascimento PC, Bohrer D (2010) Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts. Electroanalysis 22(4):406–412. https://doi.org/10.1002/elan.200900385

    Article  CAS  Google Scholar 

  14. Hamelin A, Katayama A, Picq G, Vennereau P (1980) Surface characterization by underpotential deposition: lead on gold surfaces. J Electroanal Chem 113(2):293–300. https://doi.org/10.1016/S0022-0728(80)80030-1

    Article  CAS  Google Scholar 

  15. Hamelin A (1979) Lead adsorption on gold single crystal stepped surfaces. J Electroanal Chem 101(2):285–290. https://doi.org/10.1016/S0022-0728(79)80242-9

    Article  CAS  Google Scholar 

  16. Nowicka AM, Hasse U, Hermes M, Scholz F (2010) Hydroxyl radicals attack metallic gold. Angew Chem Int Ed Engl 49(6):1061–1063. https://doi.org/10.1002/anie.200906358

    Article  CAS  Google Scholar 

  17. Hasse U, Fricke K, Dias D, Sievers G, Wulff H, Scholz F (2012) Grain boundary corrosion of the surface of annealed thin layers of gold by OH· radicals. J Solid State Electrochem 16(7):2383–2389. https://doi.org/10.1007/s10008-012-1756-x

    Article  CAS  Google Scholar 

  18. Jacob JDC, Lee TR, Baldelli S (2014) In situ vibrational study of the reductive desorption of alkanethiol monolayers on gold by sum frequency generation spectroscopy. J Phys Chem C 118(50):29126–29134. https://doi.org/10.1021/jp504463z

    Article  CAS  Google Scholar 

  19. Wano H, Uosaki K (2005) In situ dynamic monitoring of electrochemical oxidative adsorption and reductive desorption processes of a self-assembled monolayer of hexanethiol on a Au(111) surface in KOH ethanol solution by scanning tunneling microscopy. Langmuir 21(9):4024–4033. https://doi.org/10.1021/la050209w

    Article  CAS  Google Scholar 

  20. Shepherd JL, Kell A, Chung E, Sinclar CW, Workentin MS, Bizzotto D (2004) Selective reductive desorption of a SAM-coated gold electrode revealed using fluorescence microscopy. J Am Chem Soc 126(26):8329–8335. https://doi.org/10.1021/ja0494095

    Article  CAS  Google Scholar 

  21. Canaria CA, So J, Maloney JR, Yu CJ, Smith JO, Roukes ML, Fraser SE, Lansford R (2006) Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions. Lab Chip 6(2):289–295. https://doi.org/10.1039/b510661c

    Article  CAS  Google Scholar 

  22. Jouikov V, Simonet J (2015) Cathodic carboxylation of gold in thick {Au-CO2}n layers. A model for reversible electrochemical sequestration of CO2. Electrochem Commun 59:40–42. https://doi.org/10.1016/j.elecom.2015.06.020

    Article  CAS  Google Scholar 

  23. Lee LYS, Lennox RB (2007) Electrochemical desorption of n-alkylthiol SAMs on polycrystalline gold: studies using a ferrocenylalkylthiol probe. Langmuir 23(1):292–296. https://doi.org/10.1021/la061684c

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) as part of the research training group (RTG) 1947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Thal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thal, D., Kahlert, H., Chinnaya, J. et al. Impact of gold-1-decanethiol-SAM formation and removal cycles on the surface properties of polycrystalline gold and SAM quality. J Solid State Electrochem 22, 1149–1154 (2018). https://doi.org/10.1007/s10008-017-3858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3858-y

Keywords

Navigation