Skip to main content

Advertisement

Log in

Enhanced solar cell performance of electron beam irradiated CdS photoanode by electrodeposition method

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report electrosynthesized cadmium sulfide (CdS) thin films for the electron beam irradiation and solar cell application. Deposited and irradiated CdS thin films are characterized for their structural, surface, morphological, and electrical properties by XRD, FE-SEM, and photoelectrochemical cell measurement. We have confirmed that the optical and photoelectrochemical properties can be improved by irradiation treatment. This work is useful for surface tailoring and providing a novel approach to improve photoelectrochemical properties of nanostructured CdS thin films for the promising applications in nano system devices to convert solar energy. The maximum efficiency and fill factor are found to be 1.8% and 0.49 at 25 kGy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lewerenz HJ, Goslowsky H, Husemann KD, Fiechter S (1986) Efficient solar energy conversion with CuInS2. Nature 321:687–688

    Article  CAS  Google Scholar 

  2. Landry CC, Barron AR (1993) Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation. Science 260:1653–1655

    Article  CAS  Google Scholar 

  3. Nanu M, Schoonman J, Goossens A (2004) Inorganic nanocomposites of n- and p-type semiconductors: a new type of three-dimensional solar cell. Adv Mater 6:453–456

    Article  Google Scholar 

  4. Pan DC, An LJ, Sun ZM, Hou W, Yang Y, Yang ZZ, Lu YF (2008) Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621

    Article  CAS  Google Scholar 

  5. Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J (2010) Synthesis and shape control of CuInS2 nanoparticles. J Am Chem Soc 132:15976–15986

    Article  CAS  Google Scholar 

  6. Klaer J, Bruns J, Henninger R, Seimer K, Klenk R, Ellmer K, Braunig D (1998) Materials research: current scenario and future projections. Semicond Sci Technol 13:1456–1458

    Article  CAS  Google Scholar 

  7. Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schock HW, (1993) ZnO/CdS/CuInSe2 thin-film solar cells with improved performance, Appl Phys Lett 62: 597–599

  8. Scheer R, Alt M, Luck I, Lewerenz HJ (1997) Electrical-properties of coevaporated cuInS2 thin-films. Sol Energy Mater Sol Cells 49:423–430

    Article  CAS  Google Scholar 

  9. Watanabe T, Matsui M, Mori K (1994) Thin film solar cells based on CuInS2 films through a two-stage process of sputtering and H2S annealing. Sol Energy Mater Sol Cells 35:239–245

    Article  CAS  Google Scholar 

  10. Lu C, Zhang L, Zhang Y, Liu S, Liu G (2014) Fabrication of CdS/CdSe bilayer thin films by chemical bath deposition and electrodeposition, and their photoelectrochemical properties. Appl Surf Sci 319:278–284

    Article  CAS  Google Scholar 

  11. Park Y, Kim EK, Lee S, Lee J (2014) Growth and characterization of CdS thin films on polymer substrates for photovoltaic applications. J Nanosci Nanotech 14:3880–3883

    Article  CAS  Google Scholar 

  12. Plaza JL, Martínez O, Rubio S, Hortelanoa V, Dieguez E (2013) Growth of CdS and CdTe films by close space vapour sublimation by using SiC resistive elements. CrystEngComm 15:2314–2318

    Article  CAS  Google Scholar 

  13. Tang M, Tian Q, Hu X, Peng Y, Xue Y, Chen Z, Yang J, Xu X, Hu J (2012) In situ preparation of CuInS2 films on a flexible copper foil and their application in thin film solar cells. Cryst Eng Comm 14:1825–1832

    Article  CAS  Google Scholar 

  14. Ma RM, Wei XL, Dai L, Huo HD, Qin GG (2007) Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18:205605 (5pp)

    Article  Google Scholar 

  15. Kristl M, Ban I, Danc A, Danc V, Drofenik M (2010) A sonochemical method for the preparation of cadmium sulfide and cadmium selenide nanoparticles in aqueous solutions. Ultrason Sonochem 17:916–922

    Article  CAS  Google Scholar 

  16. Mondal SP, Dhar A, Ray SK (2007) Optical properties of CdS nanowires prepared by dc electrochemical deposition in porous alumina template. Mater Sci Semicond Process 10:185–193

    Article  CAS  Google Scholar 

  17. Bao C, Jin M, Lu R, Xue P, Zhang Q, Wang D, Zhao Y (2003) Surfactant–ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials. J Solid State Chem 175:322–327

    Article  CAS  Google Scholar 

  18. Murugan AV, Sonawane RS, Kale BB, Apte SK, Kulkarni AV (2001) Microwave–solvothermal synthesis of nanocrystalline cadmium sulfide. Mater Chem Phys 71:98–102

    Article  Google Scholar 

  19. Song SH, Wang X, Xiao P (2002) Effect of microstructural features on the electrical properties of TiO2. Mater Sci Eng B 94:40–47

    Article  Google Scholar 

  20. NirmalaJothi NS, Chisty PD, BabySuganthi AR, Ramalingam G, Sagayaraj P, (2011) Development of CdS nanorods of high aspect ratio under hydrothermal conditions with PEG template J Cryst Growth 316:126–131

  21. Qingqing W, Gang X, Gaorong H (2005) Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J Solid State Chem 178:2680–2685

    Article  Google Scholar 

  22. Xu D, Liu Z, Liang J, Qian Y (2005) Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J Phys Chem B 109:14344–14449

    Article  CAS  Google Scholar 

  23. Shinde SK, Thombare JV, Dubal DP, Fulari VJ (2013) Electrochemical synthesis of photosensitive nano-nest like CdSe0.6Te0.4 thin films. Appl Surf Sci 282:561–565

    Article  CAS  Google Scholar 

  24. Shinde SK, Ghodake GS, Dubal DP, Dhaygude HD, Kim DY, Fulari VJ (2016) Enhanced photoelectrochemical properties of nanoflower-like hexagonal CdSe0.6Te0.4: effect of electron beam irradiation, Ind Eng Chem 0.1016/j.jiec.2016.09.007

  25. Dhaygude HD, Shinde SK, Takale MV, Lohar GM, Rath MC, Fulari VJ (2016) Effect of electron irradiation on structural, morphological and photoluminescence properties of ZnS thin films. Cer Inter 42:10159–10164

    Article  CAS  Google Scholar 

  26. Dhaygude HD, Shinde SK, Dubal DP, Rath MC, Fulari VJ (2016) Effect of electron beam irradiation on electro synthesized hexagonal Cd0.3Zn0.7S nanosphere with excellent application in solar cell. Appl Surf Sci 368:1–7

    Article  CAS  Google Scholar 

  27. Shinde SK, Dubal DP, Ghodake GS, Fulari VJ (2015) Electronic impurities (Fe, Mn) doping in CdSe nanostructures for improvements in photoelectrochemical applications. RSC Adv 4:33184–33189

    Article  Google Scholar 

  28. Jia H, He W, Zhang Y, Lei Y, Xiang Y, Zhang S, Zheng Z (2013) Facile fabrication of CdS–poly(3-hexylthiophene) hybrid film with improved photo-current response for heterojunction solar cells. New J Chem 37:3017–3023

    Article  CAS  Google Scholar 

  29. Maticiuc N, Spalatu N, Mikli V, Hiie J (2015) Impact of CdS annealing atmosphere on the performance of CdS–CdTe solar cell. Appl Surf Sci 350:14–18

    Article  CAS  Google Scholar 

  30. Han J, Jian Y, He Y, Liu Y, Xiong X, Cha L, Krishnakumar V, Schimper HJ (2016) Nanostructures of CdS thin films prepared by various technologies for thin film solar cells. Mater Lett 177:5–8

    Article  CAS  Google Scholar 

  31. Al-Douri Y, Khasawneh Q, Kiwan S, Hashim U, Abd Hamid SB, Reshak AH, ABouhemadou A, Ameri M, Khenata R (2014) Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energ Convers Manage 82:238–243

    Article  CAS  Google Scholar 

  32. Yu J, Yu Y, Zhou P, Xiao W, Cheng B (2014) Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B-Environ 156:184–191

    Article  Google Scholar 

  33. Xiang Q, Cheng B, Yu J (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Catal B Environ 38–139:299–303

    Article  Google Scholar 

Download references

Acknowledgments

Analysis of CdS samples was supported by the Dongguk University, Seoul, Korea Research Fund 2015–2018. One of the author (VJF) is grateful to the University Grants Commission (UGC), New Delhi for the financial support through the scheme no. MRP.MAJOR-PHYS-2013-35168.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. D. Dhaygude or V. J. Fulari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.K., Ghodake, G.S., Velhal, N.B. et al. Enhanced solar cell performance of electron beam irradiated CdS photoanode by electrodeposition method. J Solid State Electrochem 21, 1517–1522 (2017). https://doi.org/10.1007/s10008-016-3484-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3484-0

Keyword

Navigation