Skip to main content
Log in

Effects of solid polymer electrolyte coating on the composition and morphology of the solid electrolyte interphase on Sn anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to discuss the effect of polymer coating layer on the Sn anode, the composition and morphology of the solid electrolyte interphase (SEI) film on the surface of Sn and Sn@PEO anode materials have been investigated. Compared with the bare cycled Sn electrode, the SEI on the surface of cycled Sn@PEO electrode is thinner, smoother, and more stable. Therefore, the Sn@PEO nanoparticles can basically keep the original appearance during cycling. Based on the results obtained from X-ray photoelectron spectroscopy (XPS), the SEI formed on the Sn@PEO electrode is characterized by inorganic components (Li2CO3)-rich outer layer and organic components-rich inner which could make the SEI more stable and inhibit the electrolyte immerging into the active materials. In particular, the elastic ion-conductive polyethylene oxide (PEO) coating could increase the toughness of SEI and allow the SEI to endure the stress variation in repetitive lithium insertion and extraction process. As a result, the Sn@PEO electrodes show significantly better capacity retention than bare Sn electrodes. The findings can serve as the theoretical foundation for the design of lithium-ion battery electrode with high energy density and long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yue W, Yang S, Liu Y, Yang X (2013) A facile synthesis of mesoporous graphene-tin composites as high-performance anodes for lithium-ion batteries. Mater Res Bull 48:1575–1580

    Article  CAS  Google Scholar 

  2. Hy S, Chen YH, Cheng HM, Pan CJ, Cheng JH, Rick J, Hwang BJ (2015) Stabilizing nano sized Si anodes with the synergetic usage of atomic layer deposition and electrolyte additives for Li-ion battery. ACS Appl Mater Interfaces 7:13801–13807

    Article  CAS  Google Scholar 

  3. Nobili F, Mancini M, Dsoke S, Marassi R (2010) Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries. J Power Sources 195:7090–7097

    Article  CAS  Google Scholar 

  4. Yu T, Liu J, Zhang H, Li S, Cui X, Feng H, Zhao Y, Liu H, Li F (2014) Effect of sulfolane on the morphology and chemical composition of the solid electrolyte interphase layer in lithium bis (oxalato) borate-based electrolyte. Surf Interface Anal 46:48–55

    Article  CAS  Google Scholar 

  5. Menkin S, Barkay Z, Golodnitsky D, Peled E (2014) Nanotin alloys supported by multiwall carbon nanotubes as high-capacity and safer anode materials for EV lithium batteries. J Power Sources 245:345–351

    Article  CAS  Google Scholar 

  6. Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630

    Article  CAS  Google Scholar 

  7. Sun L, Wang X, Susantyoko RA, Zhang Q (2015) High performance binder-free Sn coated carbon nanotube array anode. Carbon 82:282–287

    Article  CAS  Google Scholar 

  8. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  9. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  10. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  11. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

  12. Deng Q, Huang Z, Dai X, Wand Y, Li Z, Li J (2015) Three-dimensional nanoporous and nanopillar composite Cu-Sn electrode for lithium-ion battery. J Solid State Electrochem 19:1765–1771

    Article  CAS  Google Scholar 

  13. Hou X, Jiang H, Hu Y, Li Y, Huo J, Li C (2013) In situ deposition of hierarchical architecture assembly from Sn-filled CNTs for lithium-ion batteries. ACS Appl Mater Interfaces 5:6672–6677

    Article  CAS  Google Scholar 

  14. Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey JT, Thackeray MM, Edström K (2007) Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries. Electrochim Acta 52:4947–4955

    Article  CAS  Google Scholar 

  15. Beaulieu LY, Beattie SD, Hatchard TD, Dahn JR (2003) The electrochemical reaction of lithium with tin studied by in situ AFM. J Electrochem Soc 150:A419–A424

    Article  CAS  Google Scholar 

  16. Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng HH (2013) Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. RSC Adv 3:5310–5313

    Article  CAS  Google Scholar 

  17. Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533

    Article  CAS  Google Scholar 

  18. Zhong Y, Zhang Y, Cai M, Balogh MP, Li R, Sun X (2013) Core-shell heterostructures of SnM (M = (Fe, Ni, and Cr) or Cu) alloy nanowires@CNTs on metallic substrates. Appl Surf Sci 270:722–727

    Article  CAS  Google Scholar 

  19. Li X, Zhong Y, Cai M, Balogh MP, Wang D, Zhang Y, Li R, Sun X (2013) Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochim Acta 89:387–393

    Article  CAS  Google Scholar 

  20. Gowda SR, Reddy ALM, Zhan X, Ajayan PM (2011) Building energy storage device on a single nanowire. Nano Lett 11:3329–3333

    Article  CAS  Google Scholar 

  21. Gowda SR, Reddy ALM, Shaijumon MM, Zhan X, Ci L (2010) Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano Lett 11:101–106

    Article  Google Scholar 

  22. Choi NS, Lee YM, Park JH, Park JK (2003) Interfacial enhancement between lithium electrode and polymer electrolytes. J Power Sources 119:610–616

    Article  Google Scholar 

  23. Fan X, Dou P, Jiang A, Ma D, Xu X (2014) One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode. ACS Appl Mater Interfaces 6:22282–22288

    Article  CAS  Google Scholar 

  24. Yu X, Jiang A, Yang H, Meng H, Dou P, Ma D, Xu X (2015) Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization. Appl Surf Sci 347:624–631

    Article  CAS  Google Scholar 

  25. Zhu J, Jiang A, Shi Y, Fan X, Dou P, Ma D, Xu X (2015) Hollow Sn-Ni nanoparticles coated with ion-conductive polyethylene oxide as anodes for lithium ion batteries with superior cycling stability. RSC Adv 5:40807–40812

    Article  CAS  Google Scholar 

  26. Fan X, Jiang A, Dou P, Ma D, Xu X (2014) Three-dimensional ultrathin Sn/polypyrrole nanosheet network as high performance lithium-ion battery anode. RSC Adv 4:52074–52082

    Article  CAS  Google Scholar 

  27. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315

    Article  CAS  Google Scholar 

  28. Qiao R, Lucas IT, Karim A, Syzdek J, Liu X, Chen W, Persson K, Kostecki R, Yang W (2014) Distinct solid-electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy. Adv Mater Interfaces 1

  29. Ehinon KKD, Naille S, Dedryvère R, Lippens PE, Jumas JC, Gonbeau D (2008) Ni3Sn4 electrodes for Li-ion batteries: Li-Sn alloying process and electrode/electrolyte interface phenomena. Chem Mater 20:5388–5398

    Article  CAS  Google Scholar 

  30. Naille S, Dedryvere R, Martinez H, Leroy S, Lippens PE, Jumas JC, Gonbeau D (2007) XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries. J Power Sources 174:1086–1090

    Article  CAS  Google Scholar 

  31. Leroy S, Martinez H, Dedryvère R, Lemordant D, Gonbeau D (2007) Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: an XPS study. Appl Surf Sci 253:4895–4905

    Article  CAS  Google Scholar 

  32. Eom KS, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321

    Article  CAS  Google Scholar 

  33. Philippe B, Dedryvère R, Allouche J, Lindgren F, Gorgoi M, Rensmo H, Gonbeau D, Edström K (2012) Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft x-ray photoelectron spectroscopy. Chem Mater 24:1107–1115

    Article  CAS  Google Scholar 

  34. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  35. Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon JM, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sources 178:409–421

    Article  CAS  Google Scholar 

  36. Martin L, Martinez H, Poinot D, Pecquenard B, Cras FL (2014) Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. J Power Sources 248:861–873

    Article  CAS  Google Scholar 

  37. Leroy S, Blanchard F, Dedryvère R, Martinez H, Carré B, Lemordant D, Gonbeau D (2005) Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal 37:773–781

    Article  CAS  Google Scholar 

  38. Li N, Song H, Cui H, Wang C (2014) Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 3:102–112

    Article  CAS  Google Scholar 

  39. Kim YJ, Lee H, Sohn HJ (2009) Lithia formation mechanism in tin oxide anodes for lithium-ion rechargeable batteries. Electrochem Commun 11:2125–2128

    Article  CAS  Google Scholar 

  40. Ui K, Fujii D, Niwata Y, Karouji T, Shibata Y, Kadoma Y, Shimada K, Kumagai N (2014) Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder. J Power Sources 247:981–990

    Article  CAS  Google Scholar 

  41. Malmgren S, Ciosek K, Hahlin M, Gustafsson T, Gorgoi M, Rensmo H, Edström K (2013) Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard x-ray photoelectron spectroscopy. Electrochim Acta 97:23–32

    Article  CAS  Google Scholar 

  42. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Article  CAS  Google Scholar 

  43. Wu ZS, Xue L, Ren W, Li F, Wen L, Cheng HM (2012) A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries. Adv Funct Mater 22:3290–3297

    Article  CAS  Google Scholar 

  44. Chan CK, Ruffo R, Hong SS, Cui Y (2009) Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources 189:1132–1140

    Article  CAS  Google Scholar 

  45. Aurbach D, Levi MD, Levi E, Schechter A (1997) Failure and stabilization mechanisms of graphite electrodes. J Phys Chem B 101:2195–2206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China(Nos. 51143009 and 51273145)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Electronic supplementary material

.

ESM 1

(DOC 48982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Meng, H., Dou, P. et al. Effects of solid polymer electrolyte coating on the composition and morphology of the solid electrolyte interphase on Sn anodes. J Solid State Electrochem 21, 955–966 (2017). https://doi.org/10.1007/s10008-016-3440-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3440-z

Keywords

Navigation