Skip to main content
Log in

Enhanced catalytic activity of ternary NiCoPd nanocatalyst dispersed on carbon nanotubes toward methanol oxidation reaction in alkaline media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ternary NiCoPd nanocatalyst dispersed on multi-walled carbon nanotubes (CNTs), NiCoPd/CNTs, was synthesized using a simple and green sonochemical method. The as-prepared NiCoPd/CNT hybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The electrochemical measurements revealed that the ternary NiCoPd/CNTs exhibited an enhanced electrocatalytic activity for the methanol oxidation reaction (MOR), much superior to those of the binary NiPd/CNT and CoPd/CNT, as well as monometallic Pd/CNT counterparts, which likely resulted from the synergistic function of the dopant metals of Ni and Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853

    Article  CAS  Google Scholar 

  2. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Article  CAS  Google Scholar 

  3. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  4. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753

    Article  CAS  Google Scholar 

  5. Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578

    Article  CAS  Google Scholar 

  6. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–3467

    Article  CAS  Google Scholar 

  7. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  Google Scholar 

  8. Chen A, Holt–Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  9. Shao M (2011) Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 196:2433–2444

    Article  CAS  Google Scholar 

  10. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675

    Article  CAS  Google Scholar 

  11. Zhang L, Tang ZK, Zhao TS (2014) A high-performance alkaline exchange membrane direct formate fuel cell. Appl Energy 115:405–410

    Article  Google Scholar 

  12. Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667

    Article  CAS  Google Scholar 

  13. Karim NA, Kamarudin SK (2013) An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl Energy 103:212–220

    Article  CAS  Google Scholar 

  14. Meng H, Zeng D, Xie F (2015) Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts 5:1221–1274

    Article  CAS  Google Scholar 

  15. Li ZS, Ji S, Pollet BG, Shen PK (2014) A Co3W3C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. Chem Commun 50:566–568

    Article  Google Scholar 

  16. Podlovchenko BI, Kuznetsov VV, Batalov RS (2016) Palladium catalyst modified with molybdenum bronze as a possible alternative to platinum in the methanol oxidation reaction. J Solid State Electrochem 20:589–595

    Article  CAS  Google Scholar 

  17. Zhu CZ, Guo SJ, Dong SJ (2013) Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium. Chem Eur J 19:1104–1111

    Article  CAS  Google Scholar 

  18. Li W, Zhao XS, Manthiram A (2014) Room-temperature synthesis of Pd/C cathode catalysts with superior performance for direct methanol fuel cells. J Mater Chem A 2:3468–3476

    Article  CAS  Google Scholar 

  19. Wang RF, Liao SJ, Ji S (2008) High performance Pd-based catalysts for oxidation of formic acid. J Power Sources 180:205–208

    Article  CAS  Google Scholar 

  20. Xu CX, Liu YQ, Hao Q, Duan HM (2013) Nanoporous PdNi alloys as highly active and methanol tolerant electrocatalysts towards oxygen reduction reaction. J Mater Chem A 1:13542–13548

    Article  CAS  Google Scholar 

  21. Wu WP, Periasamy AP, Lin GL, Shih ZY, Chang HT (2015) Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. J Mater Chem A 3:9675–9681

    Article  CAS  Google Scholar 

  22. Wang DY, Chou HL, Lin YC, Lai FJ, Chen CH, Lee JF, Hwang BJ, Chen CC (2012) Simple replacement reaction for the preparation of ternary Fe1−xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction. J Am Chem Soc 134:10011–10020

    Article  CAS  Google Scholar 

  23. Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S (2014) Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J Am Chem Soc 136:5745–5749

    Article  CAS  Google Scholar 

  24. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  25. Ren F, Wang C, Zhai C, Jiang F, Yue R, Du Y, Yang P, Xu J (2013) One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J Mater Chem A 1:7255–7261

    Article  CAS  Google Scholar 

  26. Zhang X, Zhang B, Liu DY, Qiao JL (2015) One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta 177:93–99

    Article  CAS  Google Scholar 

  27. Zhang X, Zhang B, Li XD, Ma LX, Zhang JW (2015) Sonochemical synthesis of hollow Pt alloy nanostructures on carbon nanotubes with enhanced electrocatalytic activity for methanol oxidation reaction. Int J Hydrog Energy 40:14416–14420

    Article  CAS  Google Scholar 

  28. Jiang K, Bu L, Wang P, Guo S, Huang X (2015) Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl Mater Interfaces 7:15061–15067

    Article  CAS  Google Scholar 

  29. Cheng Y, Shen PK, Saunders M, Jiang SP (2015) Core–shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells. Electrochim Acta 177:217–226

    Article  CAS  Google Scholar 

  30. Scofield ME, Koenigsmann C, Wang L, Liu H, Wong SS (2015) Energy Environ Sci 8:350–363

    Article  CAS  Google Scholar 

  31. Guo SJ, Zhang S, Sun XL, Sun SH (2011) Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J Am Chem Soc 133:15354–15357

    Article  CAS  Google Scholar 

  32. Aricò AS, Stassi A, D′Urso C, Sebastián D, Baglio V (2014) Synthesis of Pd3Co1@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells. Chem Eur J 20:10679–10684

    Article  Google Scholar 

  33. Mohanraju K, Cindrella L (2014) Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Adv 4:11939–11947

    Article  CAS  Google Scholar 

  34. Zhang X, Zhang YC, Zhang JW, Zhang B (2015) Anchoring ternary CuFePd nanocatalysts on reduced graphene oxide to improve the electrocatalytic activity for the methanol oxidation reaction. RSC Adv 5:101563–101568

    Article  CAS  Google Scholar 

  35. Fashedemie OO, Miller HA, Marchionni A, Vizza F, Ozoemena KI (2015) Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J Mater Chem A 3:7145–7156

    Article  Google Scholar 

  36. Zhu HY, Zhang S, Guo SJ, Su D, Sun SH (2013) Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J Am Chem Soc 135:7130–7133

    Article  CAS  Google Scholar 

  37. Guo SJ, Zhang S, Su D, Sun SH (2013) Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J Am Chem Soc 135:13879–13884

    Article  CAS  Google Scholar 

  38. Wang YJ, Wilkinson DP, Zhang JJ (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651

    Article  CAS  Google Scholar 

  39. Shahgaldi S, Hamelin J (2015) Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94:705–728

    Article  CAS  Google Scholar 

  40. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42

    Article  CAS  Google Scholar 

  41. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord Chem Rev 254:1117–1134

    Article  CAS  Google Scholar 

  42. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  43. Wang Q, Geng BY, Tao B (2011) A facile room temperature chemical route to Pt nanocube/carbon nanotube heterostructures with enhanced electrocatalysis. J Power Sources 196:191–195

    Article  CAS  Google Scholar 

  44. Zhang X, Ma LX (2015) Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction. J Power Sources 286:400–405

    Article  CAS  Google Scholar 

  45. Na HY, Zhang L, Qiu HX, Wu T, Chen MX, Yang N, Li LZ, Xing FB, Gao JP (2015) A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Power Sources 288:160–167

    Article  CAS  Google Scholar 

  46. Zheng JN, Li SS, Ma XH, Chen FY, Wang AJ, Chen JR, Feng JJ (2014) Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J Power Sources 262:270–278

    Article  CAS  Google Scholar 

  47. Dutta A, Datta J (2014) Energy efficient role of Ni/NiO in PdNi nanocatalyst used in alkaline DEFC. J Mater Chem A 2:3237–3250

    Article  CAS  Google Scholar 

  48. Cao N, Yang L, Dai HM, Liu T, Su J, Wu XJ, Luo W, Cheng G (2014) Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine. Inorg Chem 53:10122–10128

    Article  CAS  Google Scholar 

  49. Hu C, Zheng G, Zhao F, Shao H, Zhang Z, Chen N, Jiang L, Qu L (2014) A powerful approach to functional graphene hybrids for high performance energy-related applications. Energy Environ Sci 7:3699–3708

    Article  CAS  Google Scholar 

  50. Khassin AA, Yurieva TM, Kaichev VV, Bukhtiyarov VI, Budneva AA, Paukshtis EA, Parmon VN (2001) Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J Mol Catal A Chem 175:189–204

    Article  CAS  Google Scholar 

  51. Guse K, Papp H (1993) XPS characterization of the reduction and synthesis behavior of Co/Mn oxide catalysts for Fischer-Troosch synthesis. Fresenius J Anal Chem 346:84–91

    Article  CAS  Google Scholar 

  52. Wang AL, He XJ, Lu XF, Xu H, Tong YX, Li GR (2015) Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54:3669–3673

    Article  CAS  Google Scholar 

  53. Tian N, Zhou ZY, Sun S-G (2009) Electrochemical preparation of Pd nanorods with high-index facets. Chem Commun 12:1502–1504

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the Fundamental Research Funds for the Central Universities (nos. EG2015020, 2232014D3-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Zhang.

Additional information

Jia-Wei Zhang and Bei Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JW., Zhang, B. & Zhang, X. Enhanced catalytic activity of ternary NiCoPd nanocatalyst dispersed on carbon nanotubes toward methanol oxidation reaction in alkaline media. J Solid State Electrochem 21, 447–453 (2017). https://doi.org/10.1007/s10008-016-3331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3331-3

Keywords

Navigation