Skip to main content

Advertisement

Log in

Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports a simple methodology for the synthesis of a polyaniline/titanium oxide/graphene hybrid (Pani/TiO2/GN) using a simple methodology, and their application as a supercapacitor electrode material for energy storage. The Pani/TiO2/GN hybrid was prepared by a simple approach by simultaneous generation of Pani and TiO2 in situ from aniline and titanium iso-propoxide, respectively, in the presence of GN under ice bath conditions. The incorporation of GN improved the electrical conductivity of Pani and helped to decrease the charge transfer resistance, whereas TiO2 generation by an in situ method increased the surface area considerably and enhanced the capacitance of the Pani/TiO2/GN hybrid. TEM showed that Pani and TiO2 were well incorporated and coated on the GN successfully. The shift of the peaks in the FTIR spectrum and XRD pattern of the Pani/TiO2/GN hybrid compared to their pure counterparts suggested that TiO2 and Pani had been perfectly coated on the GN, and there was a strong interaction among Pani, GN, and TiO2 particles. The electrochemical performance of the as-prepared Pani/TiO2/GN hybrid electrode showed a high specific capacitance of 403.2 F g−1 at a current density of 2 A g−1 and excellent cycling stability for up to 1000 cycles. This suggested that the effective incorporation of GN and TiO2 into Pani and the high surface area could simultaneously increase the electrochemical capacitance and cyclic stability of the Pani/TiO2/GN hybrid, leading to superior electrochemical performance.

The electrochemical performance of as-prepared Pani/TiO2/GN hybrid electrode showed a high specific capacitance of 403.2 F g−-1 at a current density of 2 A g−-1 and excellent cycling stability for up to 1000 cycles. This suggested that the effective incorporation of GN and TiO2 into Pani and the high surface area could simultaneously increase the electrochemical capacitance and cycle stability of the Pani/TiO2/GN hybrid, leading to superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee G, Varanasi CV, Liu J (2015) Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7:3181–3188

    Article  CAS  Google Scholar 

  2. Li M, Yin W, Han X, Chang X (2016) Hierarchical nanocomposites of polyaniline scales coated on graphene oxide sheets for enhanced supercapacitors. J Solid State Electrochem. doi:10.1007/s10008-016-3202-y

    Google Scholar 

  3. Feng XM, Chen N, Zhang Y, Yan ZZ, Liu XF, Ma YW, Shen QM, Wang LH, Huang W (2014) The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J Mater Chem A 2:9178–9184

    Article  CAS  Google Scholar 

  4. Feng X, Yan Z, Chen N, Zhang Y, Liu X, Ma Y, Yang X, Hou W (2013) Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J Chem 37:2203–2209

    Article  CAS  Google Scholar 

  5. Parveen N, Ansari MO, Cho MH (2015) Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Adv 5:44920–44927

    Article  CAS  Google Scholar 

  6. Ji W, Ji J, Cui X, Chen J, Liu D, Deng H, Fu Q (2015) Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors. Chem Commun 51:7669–7672

    Article  CAS  Google Scholar 

  7. Rangom Y, Tang X, Nazar LF (2015) Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9:7248–7255

    Article  CAS  Google Scholar 

  8. Mujawar SH, Ambade SB, Battumur T, Ambade RB, Lee SH (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466

    Article  CAS  Google Scholar 

  9. Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, Zhao D, Cai L, Zhou W, Chen X, Xie S (2012) A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci 5:8726–8733

    Article  CAS  Google Scholar 

  10. Jaidev JRI, Mishra AK, Ramaprabhu S (2011) Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601–17605

    Article  CAS  Google Scholar 

  11. Hu ZA, Xie YL, Wang YX, Mo LP, Yang YY, Zhang ZY (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys 114:990–995

    Article  CAS  Google Scholar 

  12. Han YG, Kusunose T, Sekino T (2009) A study of conductive elastomer composites reinforced with sulfonic acid doped polyaniline coated titanium dioxide. J Ceram Process Res 10:208–211

    Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) A electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  14. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Article  CAS  Google Scholar 

  15. Li Y, Zijll MV, Chiang S, Pan N (2011) KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 196:6003–6006

    Article  CAS  Google Scholar 

  16. Gong J, Li Y, Hu Z, Zhou Z, Deng Y (2010) Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys Chem C 114:9970–9974

    Article  CAS  Google Scholar 

  17. Fan X, Chen T, Dai L (2014) Graphene networks for high-performance flexible and transparent supercapacitors. RSC Adv 4:36996–37002

    Article  CAS  Google Scholar 

  18. Jamal R, Shao W, Xu F, Abdiryim T (2013) Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical rout. J Mater Res 28:832–839

    Article  CAS  Google Scholar 

  19. Ghosh D, Giri S, Kalra S, Das CK (2012) Synthesis and characterisations of TiO2 coated multiwalled carbon nanotubes/graphene/polyaniline nanocomposite for supercapacitor applications. J Appl Sci 2:70–77

    Google Scholar 

  20. Su H, Wang T, Zhang S, Song J, Mao C, Niu H, Jin B, Wu J, Tian Y (2012) Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci 14:677–681

    Article  CAS  Google Scholar 

  21. Kumar R, Ansari MO, Parveen N, Barakat MA, Cho MH (2015) Simple route for the generation of differently functionalized PVC@graphene-polyaniline fiber bundles for the removal of Congo red from wastewater. RSC Adv 5:61486–61494

    Article  CAS  Google Scholar 

  22. Ansari MO, Kumar R, Parveen N, Barakat MA, Cho MH (2015) Facile strategy for the synthesis of non-covalently bonded and para-toluene sulfonic acid-functionalized fibrous polyaniline@graphene-PVC nanocomposite for the removal of Congo red. New J Chem 39:7004–7011

    Article  CAS  Google Scholar 

  23. Jiang C, Zhang J (2013) Nanoengineering titania for high rate lithium storage: a review. J Mater Sci Technol 29:97–122

    Article  CAS  Google Scholar 

  24. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Cu2+ as the electrode material for electrochemical supercapacitors. RSC Adv 4:5547–5552

    Article  CAS  Google Scholar 

  25. Parveen N, Mahato N, Ansari MO, Cho MH (2016) Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Compos Part B 87:281–290

    Article  CAS  Google Scholar 

  26. Li X, Zhang H, Wang G, Jiang Z (2010) A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors. J Mater Chem 20:10598–10601

    Article  CAS  Google Scholar 

  27. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568 (1-9)

    Google Scholar 

  28. Hidalgo D, Bocchini S, Fontana M, Saraccob G, Hernandez S (2015) Green and low-cost synthesis of PANI-TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting. RSC Adv 5:49429–49438

    Article  CAS  Google Scholar 

  29. Mashat LA, Shin K, Zadeh KK, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173

    Article  Google Scholar 

  30. Silva JEP, Torresi SIC, Faria DLA, Temperin MLA (1999) Raman characterization of polyaniline induced conformational changes. Synth Met 101:834–835

    Article  Google Scholar 

  31. Goswami S, Maiti UN, Maiti S, Nandy S, Mitra MK, Chattopadhyay KK (2011) Preparation of graphene-polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon 49:2245–2252

    Article  CAS  Google Scholar 

  32. Ansari MO, Yadav SK, Cho JW, Mohammad F (2013) Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos Part B 47:155–161

    Article  CAS  Google Scholar 

  33. Ansari MO, Khan MM, Ansari SA, Lee J, Cho MH (2014) Enhanced thermoelectric behaviour and visible light activity of Ag@TiO2/polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Adv 4:23713–23719

    Article  CAS  Google Scholar 

  34. Zhou W, Liu Y, Zhang Y, Yang G, Deng S, Shen F, Peng H, Wang L (2014) Novel multi-layer cross-linked TiO2/C nanosheets and their photocatalytic properties. New J Chem 38:1647–1654

    Article  CAS  Google Scholar 

  35. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300 °C. J Hazard Mater 192:150–159

    Article  CAS  Google Scholar 

  36. Rana U, Chakrabarti K, Malik S (2012) Benzene tetracarboxylic acid doped polyaniline nanostructures: morphological, spectroscopic and electrical characterization. J Mater Chem 22:15665–15671

    Article  CAS  Google Scholar 

  37. Ansari SA, Parveen N, Han TH, Ansari MO, Cho MH (2016) Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys Chem Chem Phys 18:9053–9060

    Article  CAS  Google Scholar 

  38. Ansari MO, Mohammad F (2011) Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J Appl Polym Sci 124:4433–4442

    Google Scholar 

  39. Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T, Das CK (2014) Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv 4:17039–17053

    Article  CAS  Google Scholar 

  40. Zhang L, Chen L, Qi B, Yang G, Gong J (2015) Synthesis of vertical aligned TiO2@polyaniline core-shell nanorods for high-performance supercapacitors. RSC Adv 5:1680–1683

    Article  CAS  Google Scholar 

  41. Xie K, Li J, Lai Y, Zhang Z, Liu Y, Zhang G, Huang H (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3:2202–2207

    Article  CAS  Google Scholar 

  42. Yoon SB, Yoon EH, Kim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196:10791–10797

    Article  CAS  Google Scholar 

  43. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  44. Fusalba F, Gouerec P, Villers D, Belanger (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1-A6.

  45. Soudan P, Lucas P, Ho HA, Jobin D, Breau L, Belanger D (2011) Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. J Mater Chem 11:773–782

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by 2016 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi Hiep Han or Moo Hwan Cho.

Electronic supplementary material

ESM 1

(DOCX 7.87 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, N., Ansari, M.O., Han, T.H. et al. Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J Solid State Electrochem 21, 57–68 (2017). https://doi.org/10.1007/s10008-016-3310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3310-8

Keywords

Navigation