Skip to main content

Advertisement

Log in

Development of a mimetic system for electrochemical detection of glutamate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the development of a biosensor to detect neurodegenerative diseases, focusing on Alzheimer’s disease, the most common type of dementia, based on the use of a small protein-like chain designed to mimic a peptide that recognizes glutamate, the main excitatory neurotransmitter present in the central nervous system of mammals. This system is based on the immobilization of the mimetic peptide for glutamate onto graphite electrodes. The produced bioelectrode showed interesting characteristics, such as short response time (about 10 s) and linear response range between 1 and 10 mmol L−1 for glutamate, indicating a promising approach for the diagnosis of neurological diseases. In addition, it was possible to observe differences in charge transfer resistance and in surface topography of the electrode, after the interaction with the glutamate target. Theoretical calculations suggest that the anchoring of glutamate indicates conformational changes in the peptide. The mimetic bioelectrode discriminates samples from patients with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173(2):278–286

    Article  CAS  Google Scholar 

  2. Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychopharmacol 18(Suppl 1):S15–S21

    Article  Google Scholar 

  3. Tsapakis EM (2002) Glutamate and psychiatric disorders. Adv Psychiatr Treat 8(3):189–197

    Article  Google Scholar 

  4. Iranzo A (2013) Neurodegenerative diseases and sleep. In: Kushida C (ed) Encyclopedia of sleep. Academic Press

  5. World Health Organization (2006) Neurological disorders: public health challenges, Geneva

  6. Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87(1):119–126

    Article  CAS  Google Scholar 

  7. Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130:1016S–1022S

    CAS  Google Scholar 

  8. O’Kane RL, Martínez-López I, DeJoseph MR, Vinã JR, Hawkins RA (1999) Na1-dependent glutamate transporters (EAAT1, EAAT2, andEAAT3) of the blood-brain barrier. J Biol Chem 274:31891–31895

    Article  Google Scholar 

  9. Babu GN, Bawari M, Mathur VN, Kalita J, Misra UK (1998) Blood glutamate levels in patients with motor neuron disease. Clin Chim Acta 273:195–200

    Article  CAS  Google Scholar 

  10. Leibowitz A, Boyko M, Shapira Y, Zlotnik A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13(8):10041–10066

    Article  CAS  Google Scholar 

  11. Hassan TH, Abdelrahman HM, Abdel Fattah NR, El-Masry NM, Hashim HM, El-Gerby KM, Abdel Fattah NR (2013) Blood and brain glutamate levels in children with autistic disorder. Res Autism Spect Dis 7(4):541–548

    Article  Google Scholar 

  12. Wang G, Zhou Y, Huang FJ, Tang HD, Xu XH, Liu JJ, Wang Y, Deng YL, Ren RJ, Xu W, Ma JF, Zhang YN, Zhao AH, Chen SD, Jia W (2014) Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J Proteome Res 13(5):2649–2658

    Article  CAS  Google Scholar 

  13. Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta 1822(5):631–638

    Article  CAS  Google Scholar 

  14. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235

    Article  CAS  Google Scholar 

  15. Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ (2011) In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discovery 6(2):109–127

    Article  CAS  Google Scholar 

  16. Pan JW, Williamson A, Cavus I, Hetherington HP, Zaveri H, Petroff OA, Spencer DD (2008) Neurometabolism in human epilepsy. Epilepsia 49(Suppl 3):31–41

    Article  CAS  Google Scholar 

  17. Baruth JM, Wall CA, Patterson MC, Port JD (2013) Proton magnetic resonance spectroscopy as a probe into the pathophysiology of autism spectrum disorders (ASD): a review. Autism Res 6(2):119–133

    Article  Google Scholar 

  18. Puts NA, Edden RA (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc 60:29–41

    Article  CAS  Google Scholar 

  19. Campos F, Perez-Mato M, Agulla J, Blanco M, Barral D, Almeida A, Brea D, Waeber C, Castillo J, Ramos-Cabrer P (2012) Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke. PLoS One 7(8):e44191

    Article  CAS  Google Scholar 

  20. Graham LTA, Aprison M (1966) Fluorometric determination of aspartate, glutamate, and γ-aminobutyrate in nerve tissue using enzymic method. Anal Biochem 15:487–497

    Article  CAS  Google Scholar 

  21. Cui Y, Barford JP, Renneberg R (2007) Development of an l-glutamate biosensor using the coimmobilization of l-glutamate dehydrogenase and p-hydroxybenzoate hydroxylase on a Clark-type electrode. Sensors Actuators B Chem 127(2):358–361

    Article  CAS  Google Scholar 

  22. Tian F, Gourine AV, Huckstepp RT, Dale N (2009) A microelectrode biosensor for real time monitoring of L-glutamate release. Anal Chim Acta 645(1–2):86–91

    Article  CAS  Google Scholar 

  23. Muslim NZN, Ahmad M, Heng LY, Saad B (2012) Optical biosensor test strip for the screening and direct determination of l-glutamate in food samples. Sensors Actuators B Chem 161(1):493–497

    Article  CAS  Google Scholar 

  24. Batra B, Kumari S, Pundir CS (2014) Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode. Enzym Microb Technol 57:69–77

    Article  CAS  Google Scholar 

  25. Wan Y, Su Y, Zhu X, Liu G, Fan C (2013) Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 47:1–11

    Article  CAS  Google Scholar 

  26. Arredondo M, Stoytcheva M, Zlatev R, Gochev V (2012) Some clinical applications of the electrochemical biosensors. Mini-Rev Med Chem 12:1301–1313

    Article  CAS  Google Scholar 

  27. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707

    Article  CAS  Google Scholar 

  28. Hennessey H, Afara N, Omanovic S, Padjen AL (2009) Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Anal Chim Acta 643(1–2):45–53

    Article  CAS  Google Scholar 

  29. Silva TAR, Ferreira LF, Souza LM, Goulart LR, Madurro JM, Brito-Madurro AG (2009) New approach to immobilization and specific-sequence detection of nucleic acids based on poly(4-hydroxyphenylacetic acid). Mater Sci Eng C 29(2):539–545

    Article  CAS  Google Scholar 

  30. Gómara MJ, Ercilla G, Alsina MA, Haro I (2000) Assessment of synthetic peptides for hepatitis a diagnosis using biosensor technology. J Immunol Methods 246:13–24

    Article  Google Scholar 

  31. Li R, Huang H, Huang L, Lin Z, Guo L, Qiu B, Chen G (2013) Electrochemical biosensor for epidermal growth factor receptor detection with peptide ligand. Electrochim Acta 109:233–237

    Article  CAS  Google Scholar 

  32. Cui Y, Kim SN, Naik RR, McAlpine MC (2012) Biomimetic peptide nanosensors. Acc Chem Res 45(5):696–704

    Article  CAS  Google Scholar 

  33. Iost RM, Da Silva WC, Madurro JM, Madurro AG, Ferreira LF, Crespilho FN (2010) Recent advances in nano-based electrochemical biosensors: application in diagnosis and monitoring of diseases. Front Biosci (Elite edition) 3:663–689

    Google Scholar 

  34. Iost RM, Madurro JM, Brito-Madurro AG, Nantes IL, Caseli L, Crespilho FN (2011) Strategies of nano-manipulation for application in electrochemical biosensors. Int. J. Electrochem Sci 6:2965–2997

    CAS  Google Scholar 

  35. Pavan S, Berti F (2012) Short peptides as biosensor transducers. Anal Bioanal Chem 402(10):3055–3070

    Article  CAS  Google Scholar 

  36. Choi JH, Kim HS, Choi JW, Hong JW, Kim YK, Oh BK (2013) A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosens Bioelectron 49:415–419

    Article  CAS  Google Scholar 

  37. Scarano S, Vestri A, Ermini ML, Minunni M (2013) SPR detection of human hepcidin-25: a critical approach by immuno- and biomimetic-based biosensing. Biosens Bioelectron 40(1):135–140

    Article  CAS  Google Scholar 

  38. Zhang Y, Islam N, Carbonell RG, Rojas OJ (2013) Specificity and regenerability of short peptide ligands supported on polymer layers for immunoglobulin G binding and detection. ACS Appl Mater Interfaces 5(16):8030–8037

    Article  CAS  Google Scholar 

  39. Hamdan SK, Zain ZM (2014) In vivo electrochemical biosensor for brain glutamate detection: a mini review. Malays J Med Sci 21:12–26

    Google Scholar 

  40. Qin S, van der Zeyden M, Oldenziel WH, Cremers TIFH, Westerink BHC (2008) Microsensors for in vivo measurement of glutamate in brain tissue. Sensors 8(11):6860–6884

    Article  CAS  Google Scholar 

  41. Kopparthy V, Tangutooru S, Guilbeau E (2015) Label free detection of L-glutamate using microfluidic based thermal biosensor. Bioengineering 2(1):2–14

    Article  Google Scholar 

  42. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N (2009) Biosensor based on glutamate dehydrogenase immobilized in chitosan for the determination of ammonium in water samples. Anal Biochem 388(1):28–32

    Article  CAS  Google Scholar 

  43. O’Neill RD, Chang SC, Lowry JP, McNeil CJ (2004) Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosens Bioelectron 19(11):1521–1528

    Article  Google Scholar 

  44. Batra B, Yadav M, Pundir CS (2016) L-glutamate biosensor based on l-glutamate oxidase immobilized onto ZnO nanorods/polypyrrole modified pencil graphite electrode. Biochem Eng J 105:428–436

    Article  CAS  Google Scholar 

  45. Claussen JC, Artiles MS, McLamore ES, Mohanty S, Shi J (2011) Electrochemical glutamate biosensing with nanocube and nanosphere augmented singlewalled carbon nanotube networks: a comparative study. J Mater Chem 21:11224–11231

    Article  CAS  Google Scholar 

  46. Rahman MM, Umar A, Sawada K (2009) High-sensitive glutamate biosensor based on NADH at Lauth’s violet/multiwalled carbon nanotubes composite film on gold substrates. J Phys Chem 113:1511–1516

    Article  CAS  Google Scholar 

  47. Schwab M (2012) Mimetic peptide In: Encyclopedia of cancer. Springer: 2318–2318

  48. Gaussian 09 , Revision D.01. (2009) , Gaussian, Inc., Wallingford CT. http://www.gaussian.com/g_tech/rel_notes.pdf.

    Google Scholar 

  49. Hohenberg PK, W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  50. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  51. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  52. Software Gauss. http://gaussview.software.informer.com/5.0/.

  53. Collyer SD, Davis F, Lucke A, Stirling CJM, Higson SPJ (2003) The electrochemistry of the ferri/ferrocyanide couple at a calix[4]resorcinarenetetrathiol-modified gold electrode as a study of novel electrode modifying coatings for use within electro-analytical sensors. J Electroanal Chem 549:119–127

    Article  CAS  Google Scholar 

  54. Tsierkezos NG, Knauer A, Ritter U (2014) Thermodynamic investigation of ferrocyanide/ferricyanide redox system on nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles. Thermochim Acta 576:1–8

    Article  CAS  Google Scholar 

  55. Zhang M, Yin BC, Wang XF, Ye BC (2011) Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 47(8):2399–2401

    Article  CAS  Google Scholar 

  56. Bianying F, Linjie G, Lihua W, Fan L, Jianxin L, Jimin G, Chunhai F, Qing H (2013) A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. Anal Chem 85(16):7732–7737

    Article  Google Scholar 

  57. Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226

    Article  CAS  Google Scholar 

  58. Prodromidis MI (2010) Impedimetric immunosensors—a review. Electrochim Acta 55(14):4227–4233

    Article  CAS  Google Scholar 

  59. Afonso AS, Goulart LR, Goulart IMB, Machado AEH, Madurro JM, Brito-. Madurro AG (2010) A promising bioelectrode based on gene of mycobacterium leprae immobilized onto poly(4-aminophenol). J Appl Polym Sci 118(5):2921–2928

    Article  CAS  Google Scholar 

  60. Zhang J, Shan D, Mu S (2006) Electrochemical copolymerization of aniline with m-aminophenol and novel electrical properties of the copolymer in the wide pH range. Electrochim Acta 51(20):4262–4270

    Article  CAS  Google Scholar 

  61. Grieshaber D, MacKenzie R, Voros J, Reimhult2 E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458

  62. Davydova TV, Voskresenskaya NI, Gorbatov VY, Fomina VG, Doronina OA, Maksunova IV (2009) Production of autoantibodies to glutamate during Alzheimer’s dementia. Bull Exp Biol Med 147(4):405–407

    Article  CAS  Google Scholar 

  63. Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26(6):450–456

    Article  Google Scholar 

  64. Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R (2011) Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 32(5):802–810

    Article  CAS  Google Scholar 

  65. Basun H, Forssell LG, Almkvist O, Cowburn RF, Eklof R, Winblad B, Wetterberg L (1990) Amino acid concentrations in cerebrospinal fluid and plasma in Alzheimer’s disease and healthy control subjects. J Neural Transm 4:295–304

    Article  Google Scholar 

  66. Girousi ST, Pantazaki AA, Voulgaropoulos AN (2001) Mitochondria-based amperometric biosensor for the determination of L-glutamic acid. Electroanalysis 13:243–245

    Article  CAS  Google Scholar 

  67. Cui YB, J.P, Renneberg R (2007) Development of an interference-free biosensor for l-glutamate using a bienzyme salicylate hydroxylase/l-glutamate dehydrogenase system. Enzym Microb Technol 41:689–693

    Article  CAS  Google Scholar 

  68. Tang L, Zhu Y, Xu L, Yang X, Li C (2007) Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta 73:438–443

    Article  CAS  Google Scholar 

  69. Chakraborty S, Raj CR (2007) Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem Commun 9:1323–1330

    Article  CAS  Google Scholar 

  70. Meng L, Wu P, Chen G, Cai C, Sun Y, Yuan Z (2009) Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Biosens Bioelectron 24:1751–1756

    Article  CAS  Google Scholar 

  71. Gholizadeh A, Shahrokhian S, Zad AI ,Mohajerzadeh S, Vosoughi M, Darbari S, Sanaee Z (2012) Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate. Biosens Bioelectron 31:110–115

    Article  CAS  Google Scholar 

  72. Hughes G, Pemberton R, Fielden P, Hart JP (2014) Development of a disposable screen printed amperometric biosensor based on glutamate dehydrogenase, for the determination of glutamate in clinical and food applications. Anal Bioanal Electrochem 6:435–449

    CAS  Google Scholar 

  73. Hughes G, Pemberton R, Fielden P, Hart JP (2015) Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications. Sensors Actuators B Chem 216:614–621

    Article  CAS  Google Scholar 

  74. Yu H, Ma Z, Wu Z (2015) Immobilization of Ni–Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection. Anal Chim Acta 896:137–142

    Article  CAS  Google Scholar 

  75. Kwong AWK, Grundig B, Hu J, Renneberg R (2000) Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol Lett 22:267–272

    Article  CAS  Google Scholar 

  76. Chang K-S, Hsu W-L, Chen H-Y, Chang C-K, Chen C-Y (2003) Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilized l-glutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screen-printed carbon electrode. Anal Chim Acta 481:199–208

    Article  CAS  Google Scholar 

  77. Chang K-S, Chang C-K, Chou S-F, Han H-C, Chen C-Y (2007) Characterization of a planar l-glutamate amperometric biosensor immobilized with a photo-crosslinkable polymer membrane. Sensors Actuators B Chem 122:195–203

    Article  CAS  Google Scholar 

  78. Jamal M, Xu J, Razeeb KM (2010) Disposable biosensor based on immobilisation of glutamate oxidase on Pt nanoparticles modified Au nanowire array electrode. Biosens Bioelectron 26:1420–1424

    Article  CAS  Google Scholar 

  79. Batra B, Pudir CS (2013) An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 47:496–501

    Article  CAS  Google Scholar 

  80. Özel RE, Ispas C, Ganesana M, Leiter JC, Andreescu S (2014) Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamatein hypoxic environments. Biosens Bioelectron 52:397–402

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Also, we would like to thank teacher Abílio Borghi for the review of the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana G. Brito-Madurro.

Electronic supplementary material

ESM 1

(DOCX 6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L.M., Castro, A.C.H., Oliveira, S.M. et al. Development of a mimetic system for electrochemical detection of glutamate. J Solid State Electrochem 20, 2479–2489 (2016). https://doi.org/10.1007/s10008-016-3236-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3236-1

Keywords

Navigation