Skip to main content
Log in

Introducing curcumin as an electrochemical DNA hybridization indicator and its application for detection of human interleukin-2 gene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the application of curcumin (CU) as a non-toxic electrochemical DNA hybridization indicator was described. Hybridization investigations on a pencil graphite electrode surface as a transducer using oligonucleotides containing only one base type, including poly A, poly T, poly C, and poly G as probe and as related complementary/non-complementary sequences, showed that CU has no specific interaction with each of the oligonucleotides of DNA. Furthermore, results showed good interaction between CU and the hybridized form of oligonucleotides; thus, the extent of hybridization was evaluated based on the difference between differential pulse voltammetry (DPV) signals of CU accumulated on the probe-pencil graphite electrode (PGE) and CU accumulated on the probe-target-PGE. Then, the developed biosensor was successfully applied for the detection of short sequences of human interleukin-2 (hIL-2) gene as a model. A hybridization experiment with non-complementary oligonucleotide showed that the suggested DNA sensor responds selectively to the target. At optimized conditions, two linear ranges were obtained for hIL-2 gene, first from 50 to 1000 pM and second from 0.01 to 1 μM with a detection limit of 12 pM. 7.0) containing 20 mM NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Millan KM, Mikkelsen SR (1993) Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem 65(17):2317–2323. doi:10.1021/ac00065a025

    Article  CAS  Google Scholar 

  2. Hejazi MS, Pournaghi-Azar MH, Ahour F (2010) Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem 399(1):118–124. doi:10.1016/j.ab.2009.11.019

    Article  CAS  Google Scholar 

  3. Ahour F, Pournaghi-Azar MH, Alipour E, Hejazi MS (2013) Detection and discrimination of recombinant plasmid encoding hepatitis C virus core/E1 gene based on PNA and double-stranded DNA hybridization. Biosens Bioelectron 45:287–291. doi:10.1016/j.bios.2013.01.063

    Article  CAS  Google Scholar 

  4. Marrazza G, Chianella I, Mascini M (1999) Disposable DNA electrochemical biosensors for environmental monitoring. Anal Chim Acta 387(3):297–307. doi:10.1016/S0003-2670(99)00051-3

    Article  CAS  Google Scholar 

  5. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M, Farias PAM, Valera FS, Grant DH, Ozsoz M, Flair MN (1997) DNA electrochemical biosensors for environmental monitoring. A review. Anal Chim Acta 347(1–2):1–8. doi:10.1016/S0003-2670(96)00598-3

    Article  CAS  Google Scholar 

  6. Bagni G, Osella D, Sturchio E, Mascini M (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal Chim Acta 573–574:81–89. doi:10.1016/j.aca.2006.03.085

    Article  Google Scholar 

  7. Lucarelli F, Kicela A, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor for analysis of wastewater samples. Bioelectrochemistry 58(1):113–118. doi:10.1016/S1567-5394(02)00133-0

    Article  CAS  Google Scholar 

  8. Horsman KM, Bienvenue JM, Blasier KR, Landers JP (2007) Forensic DNA analysis on microfluidic devices: a review. J Forensic Sci 52(4):784–799. doi:10.1111/j.1556-4029.2007.00468.x

    Article  CAS  Google Scholar 

  9. Alipour E, Pournaghi-Azar MH, Parvizi M, Golabi SM, Hejazi MS (2011) Electrochemical detection and discrimination of single copy gene target DNA in non-amplified genomic DNA. Electrochim Acta 56(5):1925–1931. doi:10.1016/j.electacta.2010.11.092

    Article  CAS  Google Scholar 

  10. Kagan K, Masaaki K, Eiichi T (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15(2):R1

    Article  Google Scholar 

  11. Elena EF (2011) Electrochemical indicators for DNA electroanalysis. Curr Anal Chem 7(1):51–62. doi:10.2174/157341111793797617

    Article  Google Scholar 

  12. Eda Satana Kara H (2014) Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry 99:17–23. doi:10.1016/j.bioelechem.2014.06.002

    Article  CAS  Google Scholar 

  13. Perveen F, Qureshi R, Ansari FL, Kalsoom S, Ahmed S (2011) Investigations of drug–DNA interactions using molecular docking, cyclic voltammetry and UV–Vis spectroscopy. J Mol Struct 1004(1–3):67–73. doi:10.1016/j.molstruc.2011.07.027

    Article  CAS  Google Scholar 

  14. Govindarajan VS, Stahl WH (1980) Turmeric — chemistry, technology, and quality. CRC Crit Rev Food Sci Nutr 12(3):199–301. doi:10.1080/10408398009527278

    Article  CAS  Google Scholar 

  15. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652. doi:10.1007/s00018-008-7452-4

    Article  CAS  Google Scholar 

  16. Chakraborti S, Das L, Kapoor N, Das A, Dwivedi V, Poddar A, Chakraborti G, Janik M, Basu G, Panda D, Chakrabarti P, Surolia A, Bhattacharyya B (2011) Curcumin recognizes a unique binding site of tubulin. J Med Chem 54(18):6183–6196. doi:10.1021/jm2004046

    Article  CAS  Google Scholar 

  17. Li K, Li Y, Yang L, Wang L, Ye B (2014) The electrochemical characterization of curcumin and its selective detection in curcuma using a graphene-modified electrode. Anal Methods 6(19):7801–7808. doi:10.1039/C4AY01492H

    Article  CAS  Google Scholar 

  18. Jha NS, Mishra S, Jha SK, Surolia A (2015) Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues. Electrochim Acta 151:574–583. doi:10.1016/j.electacta.2014.11.026

    Article  CAS  Google Scholar 

  19. Masek A, Chrzescijanska E, Zaborski M (2013) Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis. Electrochim Acta 107:441–447. doi:10.1016/j.electacta.2013.06.037

    Article  CAS  Google Scholar 

  20. Stanić Z, Voulgaropoulos A, Girousi S (2008) Electroanalytical study of the antioxidant and antitumor agent curcumin. Electroanalysis 20(11):1263–1266. doi:10.1002/elan.200804177

    Article  Google Scholar 

  21. Chen C, Xue H, Mu S (2014) pH dependence of reactive sites of curcumin possessing antioxidant activity and free radical scavenging ability studied using the electrochemical and ESR techniques: polyaniline used as a source of the free radical. J Electroanal Chem 713:22–27. doi:10.1016/j.jelechem.2013.11.026

    Article  CAS  Google Scholar 

  22. Serpi C, Stanić Z, Girousi S (2010) Electroanalytical study of the interaction between double stranded DNA and antitumor agent curcumin. Anal Lett 43(9):1491–1506. doi:10.1080/00032710903502199

    Article  CAS  Google Scholar 

  23. Alipour E, Allaf FN, Mahmoudi-Badiki T (2015) Investigation of specific interactions between Nile blue and single type oligonucleotides and its application in electrochemical detection of hepatitis C 3a virus. J Solid State Electrochem 20(1):183–192. doi:10.1007/s10008-015-2957-x

    Article  Google Scholar 

  24. Pournaghi-Azar MH, Hejazi MS, Alipour E (2006) Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Anal Chim Acta 570(2):144–150. doi:10.1016/j.aca.2006.04.067

    Article  CAS  Google Scholar 

  25. Hejazi MS, Alipour E, Pournaghi-Azar MH (2007) Immobilization and voltammetric detection of human interleukine-2 gene on the pencil graphite electrode. Talanta 71(4):1734–1740. doi:10.1016/j.talanta.2006.08.010

    Article  CAS  Google Scholar 

  26. Pournaghi-Azar MH, Hejazi MS, Alipour E (2007) Detection of human interleukine-2 gene using a label-free electrochemical DNA hybridization biosensor on the basis of a non-inosine substituted probe. Electroanalysis 19(4):466–472. doi:10.1002/elan.200603746

    Article  CAS  Google Scholar 

  27. Seda Nur T, Seyma A, Nilay A, Mehmet O, Dilsat O-A (2010) Different DNA immobilization strategies for the interaction of anticancer drug irinotecan with DNA based on electrochemical DNA biosensors. Comb Chem High Throughput Screen 13(7):582–589. doi:10.2174/1386207311004070582

    Article  Google Scholar 

  28. Biagiotti V, Porchetta A, Desiderati S, Plaxco KW, Palleschi G, Ricci F (2011) Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Anal Bioanal Chem 402(1):413–421. doi:10.1007/s00216-011-5361-0

    Article  Google Scholar 

  29. Wong IY, Melosh NA (2010) An electrostatic model for DNA surface hybridization. Biophys J 98(12):2954–2963. doi:10.1016/j.bpj.2010.03.017

    Article  CAS  Google Scholar 

  30. Zsila F, Bikadi Z, Simonyi M (2004) Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2(20):2902–2910. doi:10.1039/B409724F

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Iran National Science Foundation, INSF (research proposal no.: 92020049), and University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeel Alipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 56.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, E., Shahabi, H. & Mahmoudi-Badiki, T. Introducing curcumin as an electrochemical DNA hybridization indicator and its application for detection of human interleukin-2 gene. J Solid State Electrochem 20, 1645–1653 (2016). https://doi.org/10.1007/s10008-016-3168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3168-9

Keywords

Navigation