Skip to main content
Log in

Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area are synthesized through a sol–gel method by using silica derived from tetraethoxysilane hydrolysis as a template. The structural and morphological characteristics of the oxides are determined using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and N2 adsorption experiments. The electrochemical properties, including capacitance, of the oxides are analyzed through cyclic voltammetry, AC impedance spectroscopy, and charge–discharge tests in 7 M KOH under ambient conditions. The as-prepared nickel cobalt oxides possessing an ultra-high specific surface area of 438.3 m2 g−1 and a mesoporous structure exhibit a high specific capacitance of 1157.7 F g−1 and a long-term cyclic stability (97.13 % capacity retention after 5000 cycles). Thus, the prepared oxides are promising for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey O, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energ Environ Sci 9:1238–1251

    Article  Google Scholar 

  2. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  Google Scholar 

  3. Yoon H, Kim HJ, Yoo JJ, Yoo CY, Park JH, Lee YA, Cho WK, Han YK, Kim DH (2015) Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. J Mater Chem A 3:23323–23332

    Article  CAS  Google Scholar 

  4. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 5:1597–1614

    Article  Google Scholar 

  5. Xia H, Meng YS, Yuan G, Cui C, Lu L (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid ST 15:A60–A63

    Article  CAS  Google Scholar 

  6. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Inter 4:4484–4490

    Article  CAS  Google Scholar 

  7. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027

    Article  CAS  Google Scholar 

  8. Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29:9179–9187

    Article  CAS  Google Scholar 

  9. Liang K, Tang X, Hu W (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22:11062–11067

    Article  CAS  Google Scholar 

  10. Li J, Zhao W, Huang F, Manivannan A, Wu N (2011) Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3:5103–5109

    Article  CAS  Google Scholar 

  11. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  12. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  13. Gu L, Wang Y, Lu R, Guan L, Peng X, Sha J (2014) Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors. J Mater Chem A 2:7161–7164

    Article  CAS  Google Scholar 

  14. Kong DS, Wang JM, Shao HB, Zhang JQ, Cao CN (2011) Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance. J Alloy Compd 509:5611–5616

    Article  CAS  Google Scholar 

  15. Rakhi RB, Wei C, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567

    Article  CAS  Google Scholar 

  16. Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Inter 5:1596–1603

    Article  CAS  Google Scholar 

  17. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325

    Article  CAS  Google Scholar 

  18. Hu L, Wu L, Liao M, Hu X, Fang X (2012) Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv Funct Mater 22:998–1004

    Article  CAS  Google Scholar 

  19. Marco JF, Gancedo JR, Gracia M, Gautier JL, HM R’o EIP, Greaves C, FJ B (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11:3087–3093

    Article  CAS  Google Scholar 

  20. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  CAS  Google Scholar 

  21. Yu XY, Yao XZ, Luo T, Jia Y, Liu JH, Huang XJ (2013) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Inter 6:3689–3695

    Article  Google Scholar 

  22. Jokar E, Irajizad A, Shahrokhian S (2015) Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J Solid State Electr 19:269–274

    Article  CAS  Google Scholar 

  23. Yan T, Li Z, Li R, Ning Q, Kong H, Niu Y, Liu J (2012) Nickel–cobalt double hydroxides microspheres with hollow interior and hedgehog-like exterior structures for supercapacitors. J Mater Chem 22:23587–23592

    Article  CAS  Google Scholar 

  24. Aguirre JC, Ferreira A, Ding H, Jenekhe SA, Kopidakis N, Asta M, Pilon L, Rubi Y (2014) Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM). J Phys Chem C 118:19505–19523

    Article  CAS  Google Scholar 

  25. Yu W, Jiang X, Ding S, Lie BQ (2014) Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J Power Sources 256:440–448

    Article  CAS  Google Scholar 

  26. Mondal AK, Su D, Chen S, Kretschmer K, Xie X, Ahn HJ, Wang G (2015) A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16:169–157

    Article  CAS  Google Scholar 

  27. Cabo M, Pellicer E, Rossinyol E, Castell O, Suriñach S, Baró MD (2009) Mesoporous NiCo2O4 spinel: influence of calcination temperature over phase purity and thermal stability. Cryst Growth Des 9:4814–4821

    Article  CAS  Google Scholar 

  28. Kobayashi Y, Ke X, Hata H, Schiffer P, Mallouk TE (2008) Soft chemical conversion of layered double hydroxides to superparamagnetic spinel platelets. Chem Mater 20:2374–2381

    Article  CAS  Google Scholar 

  29. Estella J, Echeverría JC, Laguna M, Garrido JJ (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Micropor Mesopor Mater 102:274–282

    Article  CAS  Google Scholar 

  30. Baumann TF, Fox GA, Satcher JH Jr, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076

    Article  CAS  Google Scholar 

  31. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KS, Unger WKK (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  32. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  CAS  Google Scholar 

  33. Mai LQ, Minhas-Khan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923

    Article  Google Scholar 

  34. Hu G, Tang C, Li C, Li H, Wang Y, Gong H (2011) The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances. J Electrochem Soc 158:A695–A699

    Article  CAS  Google Scholar 

  35. Xing W, Qiao S, Wu X, Gao X, Zhou J, Zhuo S, Hartono SB, Hulicova-Jurcakova D (2011) Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J Power Sources 196:4123–4127

    Article  CAS  Google Scholar 

  36. Xu K, Zou R, Li W, Liu Q, Wang T, Yang J, Chen Z, Hu J (2013) Carbon-coated mesoporous NiO nanoparticles as an electrode material for high performance electrochemical capacitors. New J Chem 37:4031–4036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding support by Laboratory of Precision Manufacturing Technology, CAEP (Grant No. KF15003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Yao, M., Zhao, P. et al. Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. J Solid State Electrochem 20, 1429–1434 (2016). https://doi.org/10.1007/s10008-016-3149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3149-z

Keywords

Navigation