Skip to main content
Log in

Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  Google Scholar 

  2. Meissner A, Mikkelsen TS, Gu H, et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  Google Scholar 

  3. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  Google Scholar 

  4. Nojima M, Suzuki H, Toyota M, et al. (2007) Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26:4699–4713

    Article  CAS  Google Scholar 

  5. Horton JR, Liebert K, Bekes M, Jeltsch A, Cheng X (2006) Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J Mol Biol 358:559–570

    Article  CAS  Google Scholar 

  6. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genetics 6:597–610

    Article  CAS  Google Scholar 

  7. Parry L, Clarke AR (2011) The roles of the methyl-CpG binding proteins in cancer. Genes Cancer 2:618–630

    Article  CAS  Google Scholar 

  8. Xu Z, Yin H, Han Y, Zhou Y, Ai S (2014) DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity. Anal Chim Acta 829:9–14

    Article  CAS  Google Scholar 

  9. Zhang H, Li M, Fan M, Gu J, Wu P, Cai C (2014) Electrochemiluminescence signal amplification combined with a conformation-switched hairpin DNA probe for determining the methylation level and position in the Hsp53 tumor suppressor gene. Chem Commun 50:2932–2934

    Article  CAS  Google Scholar 

  10. Liu T, Zhao J, Zhang D, Li G (2009) Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Anal Chem 82:229–233

    Article  Google Scholar 

  11. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M (2006) DNA methylation: bisulphite modification and analysis. Nat Protoc 1:2353–2364

    Article  CAS  Google Scholar 

  12. WanY WY, Luo J, Lu Z (2007) Bisulfite modification of immobilized DNAs for methylation detection. Biosens Bioelectron 22:2415–2421

    Article  Google Scholar 

  13. Burke DG, Griffiths K, Kassir Z, Emslie K (2009) Accurate measurement of DNA methylation that is traceable to the international system of units. Anal Chem 81:7294–7301

    Article  CAS  Google Scholar 

  14. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  Google Scholar 

  15. Moskalev EA, Zavgorodnij MG, Majorova SP, Vorobjev IA, Jandaghi P, Bure IV, Hoheisel JD (2011) Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 39:e77

    Article  CAS  Google Scholar 

  16. Kato D, Goto K, Fujii S, Takatsu A, Hirono S, Niwa O (2011) Electrochemical DNA methylation detection for enzymatically digested CpG oligonucleotides. Anal Chem 83:7595–7599

    Article  CAS  Google Scholar 

  17. Wu H, Liu S, Jiang J, Shen G, Yu R (2012) A sensitive electrochemical biosensor for detection of DNA methyltransferase activity by combining DNA methylation-sensitive cleavage and terminal transferase-mediated extension. Chem Commun 48:6280–6282

    Article  CAS  Google Scholar 

  18. Yin H, Zhou Y, Xu Z, Chen L, Zhang D, Ai S (2013) An electrochemical assay for DNA methylation, methyltransferase activity and inhibitor screening based on methyl binding domain protein. Biosens Bioelectron 41:492–497

    Article  CAS  Google Scholar 

  19. Wang G, Shi G, Chen X, Yao R, Chen F (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182(1–2):315–322

    Article  CAS  Google Scholar 

  20. Zhu B, Booth MA, Shepherd P, Sheppard A, Travas-Sejdic J (2015) Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. Biosens Bioelectron 64:74–80

    Article  Google Scholar 

  21. Wang P, Chen H, Tian J, Dai Z, Zou X (2013) Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens Bioelectron 45:34–39

    Article  CAS  Google Scholar 

  22. Rivasa G, Rubianesa M, Rodrígueza M, Ferreyraa N, Luquea G, Pedanoa M, Miscoriaa S, Parradob C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307

    Article  Google Scholar 

  23. Wang Z, Xiao S, Chen Y (2006) β-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J Electroanal Chem 589:237–242

    Article  CAS  Google Scholar 

  24. Shen Q, Wang X (2009) Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode. J Electroanal Chem 632:149–153

    Article  CAS  Google Scholar 

  25. Wang P, Wu H, Dai Z, Zou X (2011) Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens Bioelectron 26:3339–3345

    Article  CAS  Google Scholar 

  26. Liu K, Fu H, Xie Y, Zhang L, Pan K, Zhou W (2008) Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes. J Phys Chem C 112:951–957

    Article  CAS  Google Scholar 

  27. Nakahara T, Okuzawa M, Maeda H, Hirano M, Matsumoto T, Uchimura H (1992) Simultaneous determination of purine and pyrimidine bases using high-performance liquid chromatography with electrochemical detection: application to DNA assay. J Liq Chromatogr Relat Technol 15:1785–1796

    Article  CAS  Google Scholar 

  28. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun 16:1804–1805

    Article  Google Scholar 

  29. Zhu G, Zhang X, Gai P, Zhang X, Chen J (2012) β-cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. Nanoscale 4:5703–5709

    Article  CAS  Google Scholar 

  30. Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2015) New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 131:548–555

    Article  CAS  Google Scholar 

  31. Chen G, Han X, Zhang L, Ye J (2002) Determination of purine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A 954:267–276

    Article  CAS  Google Scholar 

  32. Ivandini T, Honda K, Rao TN, Fujishima A, Einaga Y (2007) Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta 71:648–655

    Article  CAS  Google Scholar 

  33. Wang P, Mai Z, Dai Z, Zou X (2010) Investigation of DNA methylation by direct electrocatalytic oxidation. Chem Commun 46:7781–7783

    Article  CAS  Google Scholar 

  34. Zheng X, Wang L (2013) Direct electrocatalytic oxidation and simultaneous determination of 5-methylcytosine and cytosine at electrochemically reduced graphene modified glassy carbon electrode. Electroanalysis 25(7):1697–1705

    Article  CAS  Google Scholar 

  35. Kato D, Sekioka N, Ueda A, Kurita R, Hirono S, Suzuki K, Niwa O (2008) A nanocarbon film electrode as a platform for exploring DNA methylation. J Am Chem Soc 130:3716–3717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Foundation of China (NSFC NOs. 91417301, 21375101 and 60801020), the Fundamental Research Funds for the Central Universities (2042014kf0295), and the Natural Science Foundation of Hubei Province (ZRY2014000492), Wuhan Science and Technology Bureau (No: 20140601010057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Zilin Chen.

Electronic supplementary material

ESM 1

(DOC 660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, F., Wang, F. et al. Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin. J Solid State Electrochem 20, 1263–1270 (2016). https://doi.org/10.1007/s10008-016-3122-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3122-x

Keywords

Navigation