Skip to main content
Log in

Highly sensitive determination and selective immobilization of amoxicillin using carbon ionic liquid electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon ionic liquid electrode (CILE) was used as a substrate for immobilization and determination of amoxicillin (AMX) in phosphate buffer solution. The electrochemical response of AMX showed an irreversible oxidation peak in the first scan and redox peaks corresponding to the electrooxidation of product in the subsequent scans which gradually grew upon repetitive scanning. Effect of experimental conditions on electrooxidation of AMX and its adsorbed intermediates was investigated, and possible mechanism for strong immobilization is suggested. The electrode response was linear in the concentration range of 5.0 to 400.0 μmol L−1 AMX with a detection limit of 0.8 μmol L−1 AMX. There was no serious interference from other β-lactam family of antibiotics such as ampicillin and penicillin. The electrode showed good selectivity as well as high sensitivity toward quantification of AMX in pharmaceuticals and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Finch RG, Greenwood D, Norrby SR, Whitley RJ (2003) Antibiotics and chemotherapy: anti-infective agents and their use in therapy. Churchill Livingstone, Edinburgh

    Google Scholar 

  2. Hitner H, Nagle B (2005) Pharmacology: an introduction. McGraw Hill, New York

    Google Scholar 

  3. Prescott JF, Baggot JD, Walker RD (2000) Antimicrobial therapy in veterinary medicine. Iowa State University Press, Ames

    Google Scholar 

  4. Plumb DC (2005) Veterinary drug handbook. Blackwell Publishing, Ames

    Google Scholar 

  5. Remers WA, Delagado JN (1998) Textbook on organic medicinal and pharmaceutical chemistry. Lippincott-Raven Publishers, New York

    Google Scholar 

  6. Goodman-Hillman A, Rall T, Nier A, Taylor P (1996) The pharmacological basis of therapeutics. McGraw Hill, New York

    Google Scholar 

  7. Benito-Pena E, Urraca JL, Moreno-Bondi MC (2009) J Pharm Biomed Anal 49:289–294

    Article  CAS  Google Scholar 

  8. Dousa M, Hosmanova R (2005) J Pharm Biomed Anal 37:373–377

    Article  CAS  Google Scholar 

  9. Liu H, Wang H, Sunderland VB (2005) J Pharm Biomed Anal 37:395–398

    Article  CAS  Google Scholar 

  10. De Baere S, De Backer P (2007) Anal Chim Acta 586:319–325

    Article  Google Scholar 

  11. Hernandez M, Borrull F, Calull M (1999) J Chromatogr B 731:309–315

    Article  CAS  Google Scholar 

  12. Garcia-Reiriz A, Damiani PC, Olivieri AC (2007) Talanta 71:806–815

    Article  CAS  Google Scholar 

  13. Rojanarata T, Opanasopita P, Ngawhirunpat T, Saehuan C, Wiyakrutta S, Meevootisom V (2010) Enzym Microb Technol 46:292–296

    Article  CAS  Google Scholar 

  14. Hasanpour F, Ensafi AA, Khayamian T (2010) Anal Chim Acta 670:44–50

    Article  CAS  Google Scholar 

  15. Rezaei B, Damiri S (2009) Electroanalysis 21:1577–1585

    Article  CAS  Google Scholar 

  16. Kumar AS, Sornambikai S, Deepika L, Zen JM (2010) J Mater Chem 20:10152–10158

    Article  CAS  Google Scholar 

  17. Santos DP, Bergamini MF, Zanoni MVB (2008) Sensors Actuators B 133:398–403

    Article  CAS  Google Scholar 

  18. Fouladgar M, Hadjmohammadi MR, Khalilzadeh MA, Biparva P, Teymoori N, Beitollahi H (2011) Int J Electrochem Sci 6:1355–1366

    CAS  Google Scholar 

  19. Ojani R, Raoof J, Zamani S (2012) Bioelectrochemistry 85:44–49

    Article  CAS  Google Scholar 

  20. Uslu B, Biryol I (1999) J Pharm Biomed Anal 20:59–598

    Article  Google Scholar 

  21. Safavi A, Maleki N, Moradlou O (2008) Electroanalysis 20:2158–2162

    Article  CAS  Google Scholar 

  22. Maleki N, Safavi A, Tajabadi F (2007) Electroanalysis 19:2247–2250

    Article  CAS  Google Scholar 

  23. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  24. Safavi A, Maleki N, Tajabadi F (2007) Analyst 132:54–58

    Article  CAS  Google Scholar 

  25. Safavi A, Maleki N, Ershadifar H, Tajabadi F (2010) Anal Chim Acta 674:176–181

    Article  CAS  Google Scholar 

  26. Absalan G, Akhond M, Ershadifar H (2015) J Solid State Electrochem 19:1113–1121

    Article  CAS  Google Scholar 

  27. Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  28. Chun S, Dzyuba SV, Bartsch RA (2001) Anal Chem 73:3737–3741

    Article  CAS  Google Scholar 

  29. Shahrokhian S, Hosseini-Nassab N, Kamalzadeh Z (2014) J Solid State Electrochem 18:77–88

    Article  CAS  Google Scholar 

  30. Gattrell M, Kirk DW (1993) J Electrochem Soc 140:1534–1540

    Article  CAS  Google Scholar 

  31. Yang X, Kirsch J, Fergus J, Simonian A (2013) Electrochim Acta 94:259–268

    Article  CAS  Google Scholar 

  32. Enache TA, Oliveira-Brett AM (2011) J Electroanal Chem 55:9–16

    Article  Google Scholar 

  33. Mathiyarasu J, Joseph J, Phani KLN, Yegnaraman V (2004) Indian J Chem Technol 11:797–803

    CAS  Google Scholar 

  34. Wang J, Dea RP, Musameh M (2003) Electroanalysis 15:1830–1834

    Article  CAS  Google Scholar 

  35. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Water Res 43:2419–2430

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  37. Wang J (2001) Analytical electrochemistry. Wiley, New York

    Google Scholar 

  38. Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker Inc, New York

    Google Scholar 

  39. Salimi A, Hallaj R, Mamkhezri H, Hosaini SMT (2008) J Electroanal Chem 619–620:31–38

    Article  Google Scholar 

  40. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  41. Ingle JD, Crouch SR (1988) Spectrochemical analysis. Prentice-Hall Inc, USA

    Google Scholar 

  42. Bergamini MF, Teixeira MFS, Dockal ER, Bocchi N, Cavalheiro ETG (2006) J Electrochem Soc 153:E94–E98

    Article  CAS  Google Scholar 

  43. Shafieyan H, Rouhollahi A (2010) Anal Bioanal Electrochem 2:13–23

    Google Scholar 

  44. Brahman PK, Dar RA, Pitre KS (2013) Sensors Actuators B 176:307–314

    Article  CAS  Google Scholar 

  45. Kurniawan F, Tsakova V, Mirsky VM (2006) Electroanalysis 18:1937–1942

    Article  CAS  Google Scholar 

  46. Kar A (2005) Pharmaceutical drug analysis. New Age International Publisher, New Delhi

    Google Scholar 

Download references

Acknowledgments

A grateful acknowledgment is made to Shiraz University Research Council for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodratollah Absalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absalan, G., Akhond, M. & Ershadifar, H. Highly sensitive determination and selective immobilization of amoxicillin using carbon ionic liquid electrode. J Solid State Electrochem 19, 2491–2499 (2015). https://doi.org/10.1007/s10008-015-2894-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2894-8

Keywords

Navigation