Skip to main content
Log in

Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for Lithium battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials doped with different Mo content were studied using electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and X-ray diffractometry (XRD). The electrochemical properties were also measured. An increase of Mo content resulted in a bigger lattice volume and a lower cation disorder. In addition, the electrochemical performance was enhanced with the increasing Mo content. However, more aggregation of particles was found to occur at a higher Mo content, which resulted in worse electrochemical performance. The highest electrochemical performance was obtained with a 5 mol% Mo addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    Article  CAS  Google Scholar 

  2. Singh G, West WC, Soler J, Katiyar RS (2012) In situ Raman spectroscopy of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co). J Power Sources 218:34–38

    Article  CAS  Google Scholar 

  3. West W, Soler J, Ratnakumar B (2012) Preparation of high quality layered-layered composite Li2MnO3−LiMO2(M = Ni, Mn, Co) Li-ion cathodes by a ball milling–annealing process. J Power Sources 204:200–204

    Article  CAS  Google Scholar 

  4. Yang S, Huang G, Hu S, Hou X, Huang Y, Yue M, Lei G (2014) Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett 118:8–11

    Article  CAS  Google Scholar 

  5. Zhao C, Wang X, Liu X, Zhang H, Shen Q (2014) Mn–Ni content-dependent structures and electrochemical behaviors of serial Li1.2Ni0.13 + x Co0.13Mn0.54 − x O2 as lithium-ion battery cathodes. ACS Appl Mater Interfaces 6:2386–2392

    Article  CAS  Google Scholar 

  6. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6:10330–10341

    Article  CAS  Google Scholar 

  7. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci Rep 3:3094

    Google Scholar 

  8. Zheng J, Wu X, YANG Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078

    Article  CAS  Google Scholar 

  9. Gao J, Kim J, Manthiram A (2009) High capacity Li [Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Commun 11:84–86

    Article  CAS  Google Scholar 

  10. Lee E-S, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem 2:3932–3939

    Article  CAS  Google Scholar 

  11. Cong L-N, Gao X-G, Ma S-C, Guo X, Zeng Y-P, Tai L-H, Wang R-S, Xie H-M et al (2014) Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12. Electrochim Acta 115:399–406

    Article  CAS  Google Scholar 

  12. Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25

    Article  CAS  Google Scholar 

  13. Li L, Zhang X, Chen R, Zhao T, Lu J, Wu F, Amine K (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34

    Article  CAS  Google Scholar 

  14. Whitfield P, Davidson I, Cranswick L, Swainson I, Stephens P (2005) Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn< sub> 1/3</sub> Ni< sub> 1/3</sub> Co< sub> 1/3</sub> O< sub> 2</sub> using neutron and anomalous dispersion powder diffraction. Solid State Ionics 176:463–471

    Article  CAS  Google Scholar 

  15. Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta 105:200–208

    Article  CAS  Google Scholar 

  16. Du K, Yang F, G-r H, Z-d P, Y-b C, Ryu KS (2013) Sodium additive to improve rate performance of Li Li0.2Mn0.54Ni0.13Co0.13 O2 material for Li-ion batteries. J Power Sources 244:29–34

    Article  CAS  Google Scholar 

  17. Park J-H, Lim J, Yoon J, Park K-S, Gim J, Song J, Park H, Im D et al (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2·0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton Trans 41:3053–3059

    Article  CAS  Google Scholar 

  18. Takahashi Y, Kijima N, Hayakawa H, Awaka J, Akimoto J (2008) Single-crystal synthesis and structure refinement of Li2MoO3. J Phys Chem Solids 69:1518–1520

    Article  CAS  Google Scholar 

  19. Wu F, Tian J, Su Y, Guan Y, Jin Y, Wang Z, He T, Bao L et al (2014) Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J Power Sources 269:747–754

    Article  CAS  Google Scholar 

  20. Gao Y, Ma J, Wang X, Lu X, Bai Y, Wang Z, Chen L (2014) Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. J Mater Chem 2:4811–4818

    Article  CAS  Google Scholar 

  21. Konishi H, Yoshikawa M, Hirano T (2013) The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1 − x Co0.1Mo x O2 (x = 0, 0.02, 0.04). J Power Sources 244:23–28

    Article  CAS  Google Scholar 

  22. Jiang K-C, Xin S, Lee J-S, Kim J, Xiao X-L, Guo Y-G (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14:2934–2939

    Article  CAS  Google Scholar 

  23. Wang J, Yao XY, Zhou XF, Liu ZP (2011) Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem 21:2544–2549

    Article  CAS  Google Scholar 

  24. Bai Y, Wang X, Zhang X, Shu H, Yang X, Hu B, Wei Q, Wu H et al (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364

    Article  CAS  Google Scholar 

  25. Liu JL, Chen L, Hou MY, Wang F, Che RC, Xia YY (2012) General synthesis of xLi2MnO3·1 − x LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J Mater Chem 22:25380–25387

    Article  CAS  Google Scholar 

  26. Zhao TL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213

    Article  CAS  Google Scholar 

  27. Wang Q, Huo J, Zheng Y, Pang S, He Z (2013) Design of red/green emissive lanthanide activated nano-materials by supersonic and microwave co-irradiations. Opt Mater 35:1146–1150

    Article  Google Scholar 

  28. Cho T-H, Shiosaki Y, Noguchi H (2006) Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J Power Sources 159:1322–1327

    Article  CAS  Google Scholar 

  29. Xiao J, Chernova NA, Whittingham MS (2008) Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries. Chem Mater 20:7454–7464

    Article  CAS  Google Scholar 

  30. Dorset DL, Siskin M (2008) Molecular assemblies in asphaltenes and their high-temperature coke products. Part 1: initial molecular organization. Energy Fuels 22:2512–2517

    Article  CAS  Google Scholar 

  31. Yu S-H, Yoon T, Mun J, Park S, Kang Y-S, Park J-H, Oh SM, Sung Y-E (2013) Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J Mater Chem 1:2833–2839

    Article  CAS  Google Scholar 

  32. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 · (1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  CAS  Google Scholar 

  33. Moorhead-Rosenberg Z, Chemelewski KR, Goodenough JB, Manthiram A (2013) Magnetic measurements as a viable tool to assess the relative degrees of cation ordering and Mn3+ content in doped LiMn1.5Ni0.5O4 spinel cathodes. J Mater Chem 1:10745–10752

    Article  CAS  Google Scholar 

  34. Liu W, Fang G, Xia B, Sun H, Kaneko S, Li D (2013) Improved electrochemical properties of Li[Li0.2Ni0.17Mn0.56Co0.07]O2 cathode material via micro-structural rearrangement. RSC Adv 3:15630–15635

    Article  CAS  Google Scholar 

  35. Uzun D, Doğrusöz M, Mazman M, Biçer E, Avci E, Şener T, Kaypmaz TC, Demir-Cakan R (2013) Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries. Solid State Ionics 249–250:171–176

    Article  Google Scholar 

  36. Wang GG, Wang JM, Mao WQ, Shao HB, Zhang JQ, Cao CN (2005) Physical properties and electrochemical performance of LiMn2O4 cathode materials prepared by a precipitation method. J Solid State Electrochem 9:524–530

    Article  CAS  Google Scholar 

  37. Lee J, Kumar P, Moudgil BM, Singh RK (2013) Electrochemical enhancement of LiFePO4 as a cathode material by incorporating Cu flakes for lithium ion rechargeable battery. Solid State Ionics 231:18–24

    Article  CAS  Google Scholar 

  38. Zhang QY, Zhang CL, Li B, Jiang DD, Kang SF, Li X, Wang YG (2013) Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance. Electrochim Acta 107:139–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this research work by the International Cooperation Program with Germany (2012DFG61480), the National High Technology Research and Development Program of China (2013AA050901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Shan, Z., Zhu, K. et al. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for Lithium battery. J Solid State Electrochem 19, 1037–1044 (2015). https://doi.org/10.1007/s10008-014-2706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2706-6

Keywords

Navigation