Skip to main content
Log in

Electrochemical corrosion resistance performance of sustainable resource-based nanoconducting polymer composites in alkaline medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion resistance performance of poly (otoluidine) (POT)-dispersed castor oil-polyurethane, (COPU) nanocomposite coatings, POT/COPU, with three different compositions (i.e. 0.25, 0.5 and 1.0 wt%) in alkaline medium is studied. The coatings are applied on mild steel specimens by brushing. Corrosion resistance behaviour of these coatings is investigated using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS) and by weight loss. The morphological behaviour of corroded and uncorroded coated specimens is investigated by scanning electron microscopy (SEM). It is interesting to report that the presence of conducting polymer nanoparticles in POT/COPU coatings suppresses the saponification of COPU in an alkaline environment. These investigations show that the dispersion of POT in COPU remarkably improves the corrosion resistance performance of COPU in alkaline media. POT/COPU (1.0 wt%) coatings have potential as anticorrosive-coating materials in alkaline media at higher pH. These coatings have a higher resistance to alkaline medium in comparison to other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Suhybani AA, Sultan YH, Hamid WA (1991) Corrosion of aluminium in alkaline solutions, Materialwissenschaft und Werkstofftechnik, Verlag GmbH & Co. KGaA, Weinheim p. 301

  2. Ukoba OK, Oke PK, Ibegbulam MC (2012) Int J Sci Technol 2(9):618–621

    Google Scholar 

  3. Wei L, Jun-quan L, Xiao-hui TU (2007) China Foundry 4:1–4

    Google Scholar 

  4. Li JC, Zhao M, Jiang Q (2002) Mater Corros 53:269–273

    Article  CAS  Google Scholar 

  5. Samoilova OV, Zamyatina OV (2005) Activity and standards of ISO and IEC in the field of corrosion and corrosion protection, Protection of metals, Pleiades Publishing Inc. 177

  6. Díaz B, Wiatowska JS, Maurice V, Seyeux A, Härkönen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P (2013) Electrochim Acta 90:232–245

    Article  Google Scholar 

  7. Abreu CM, Izquierw M, Keddam M, Voa XRN, Takenouti H (1996) Electrochim Acta 41:2405–2415

    Article  CAS  Google Scholar 

  8. Cecchetto L, Delabouglise D, Petit JP (2007) Electrochim Acta 52:3485–3492

    Article  CAS  Google Scholar 

  9. Madram AR, Pourfarzad H, Zare HR (2012) Electrochim Acta 85:263–267

    Article  CAS  Google Scholar 

  10. Shinde V, Sainkar SR, Patil PP (2005) Corros Sci 47:1352–1369

    Article  CAS  Google Scholar 

  11. Armelin E, Pla R, Leisa F, Ramis X, Iribarren JI, Aleman C (2008) Corros Sci 50:721–728

    Article  CAS  Google Scholar 

  12. Sathiyanarayanan S, Syed Azim S, Venkatachari G (2007) Electrochim Acta 52:2068–2074

    Article  CAS  Google Scholar 

  13. Sharera Z, Sykes J (2012) Prog Org Coat 74:405–409

    Article  Google Scholar 

  14. Rohwerder M, Michalik A (2007) Electrochim Acta 53:1300–1313

    Article  CAS  Google Scholar 

  15. Lu X, Zhang W, Wanga C, Ten-Chin W, Wei Y (2011) Prog Polym Sci 36:671–712

    Article  CAS  Google Scholar 

  16. Tallman DE, Spinks G, Dominis A, Wallace GG (2002) J Solid State Electrochem 6:73–84

    Article  CAS  Google Scholar 

  17. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Int J Electrochem Sci 7:11859–11875

    CAS  Google Scholar 

  18. Yagan A, Ozcicek Pekmez N, Yıldız A (2007) Prog Org Coat 59:297–303

    Article  CAS  Google Scholar 

  19. Rohwerder M, Isik-Uppenkamp S, Amarnath CA (2011) Electrochim Acta 56:1889–1893

    Article  CAS  Google Scholar 

  20. Mathew AM, Predeep P (2012) Prog Org Coat 74:14–18

    Article  CAS  Google Scholar 

  21. Kumar SA, Bhandari H, Sharma C, Khatoon F, Dhawan SK (2012) Polym Int DOI: 10.1002/pi.4406

  22. Diniz FB, De Andrade GF, Martins CR, De Azevedo WM (2013) Prog Org Coat 76:912–916

    Article  CAS  Google Scholar 

  23. Gupta G, Birbilis N, Khanna AS (2013) Int J Electrochem Sci 8:3132–3149

    CAS  Google Scholar 

  24. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  25. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotechnol 5(10):1574–1592

    Article  CAS  Google Scholar 

  26. Armelin E, Oliver R, Liesa F, Iribarren JI, Estrany F, Aleman C (2007) Prog Org Coat 59:46–52

    Article  CAS  Google Scholar 

  27. Njuguna J, Pielichowski K (2004) J Mater Sci 39:4081–4094

    Article  CAS  Google Scholar 

  28. Alam J, Riaz U, Ashraf SM, Ahmad S (2008) J Coat Technol Res 5(1):123–128

    Article  CAS  Google Scholar 

  29. Baldissera AF, Ferreira CA (2012) Prog Org Coat 75:241–247

    Article  CAS  Google Scholar 

  30. Peng CW, Hsu C, Lin KH, Li PL, Hsieh M, Wei Y, Yeh JM, Yu YH (2011) Electrochim Acta 58:614–620

    Article  CAS  Google Scholar 

  31. Thakur S, Karak N (2013) Prog Org Coat 76:157–164

    Article  CAS  Google Scholar 

  32. Zhang J, Tu W, Dai Z (2012) Prog Org Coat 75:579–583

    Article  CAS  Google Scholar 

  33. Philipp C, Eschig S (2012) Prog Org Coat 74:705–711

    Article  CAS  Google Scholar 

  34. Adhikari A, Claesson P, Pan J, Leygraf C, Deˇıdinaite A, Blomberg E (2008) Electrochim Acta 53:4239–4247

    Article  CAS  Google Scholar 

  35. Bagherzadeh MR, Mahdavi F, Ghasemi M, Shariatpanahi H, Faridi HR (2010) Prog Org Coat 68:319–322

    Article  CAS  Google Scholar 

  36. Wessling B (2003) ACS Symp Ser 843:34–73, Ch. 3

    Article  CAS  Google Scholar 

  37. Nguyen TD, Nguyen TA, Pham MC, Piro B, Normand B, Takenouti H (2004) J Electroanal Chem 572:225–234

    Article  CAS  Google Scholar 

  38. Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Electrochim Acta 54:1249–1254

    Article  CAS  Google Scholar 

  39. Chako DJ, Leyva AA (2005) Chem Mater 17:13–19

    Article  Google Scholar 

  40. Alam J, Riaz U, Ahmad S (2008) Polym Adv Technol 19:882–888

    Article  CAS  Google Scholar 

  41. Jadhav RS, Hundiwale DG, Mahulikar PP (2010) J Coat Technol Res 7:449–454

    Article  CAS  Google Scholar 

  42. Alam J, Riaz U, Ahmad S (2009) Curr Appl Phys 9:80–86

    Article  Google Scholar 

  43. Alam J, Riaz U, Ahmad S (2010) Polym Compos 31:32–37

    CAS  Google Scholar 

  44. Alam J, Kashif M, Ahmad S, Mohammad AW (2010) World Appl Sci J 9:1–5

    CAS  Google Scholar 

  45. Riaz U, Ashraf SM, Ahmad S (2008) Anti-Corrosion Meth & Mat 55:308–316

    Article  CAS  Google Scholar 

  46. Ahmad S, Riaz U, Alam J (2009) Adv Polym Technol 28:26–31

    Article  CAS  Google Scholar 

  47. Ahmad S, Riaz U, Kashif M, Khan MS (2012) Inorg Organomet Polym 22:662–670

    Article  CAS  Google Scholar 

  48. Kashif M, Kumar D, Ahmad S Polyorthotoluidine Dispersed Castor Oil Polyurethane Anticorrosive Nanocomposite Coatings, Corro. Sci. Communicated

  49. Abd El-Rehim SS, Ibrahim MAM, Khaled KF (1999) J Appl Electrochem 29:593–599

    Article  Google Scholar 

  50. Sandhu AV, Ciomaga A, Nemtoi G, Bejinariu C, Sandhu I (2004) J Optoelectron Adv Mater 14:704–708

    Google Scholar 

  51. Deshpande PP, Vathare SS, Vagge ST, Tomšík E, Stejskal J (2013) Chem Pap 67(8):1072–1078

    Article  CAS  Google Scholar 

  52. Kinlen PJ, Silverman DC, Jeffreys CR (1997) Synth Met 85:1327–1332

    Article  CAS  Google Scholar 

  53. Fontana MG (1986) Corrosion engineering, McGraw-Hill Companies

  54. Mahato N, Singh MM (2011) Port Electrochim Acta 29:233–251

    Article  CAS  Google Scholar 

  55. Fredj N, Cohendoz S, Feaugas X, Touzain S (2011) Prog Org Coat 72:260–268

    Article  CAS  Google Scholar 

  56. Skale S, Dolecek V, Slemnik M (2008) Prog Org Coat 62:387–392

    Article  CAS  Google Scholar 

  57. Singh SK, Tambe SP, Gunasekaran G, Raja VS, Kumar D (2009) Corros Sci 5:595–601

    Article  Google Scholar 

  58. Liu X, Xiong J, Lv Y, Zuo Y (2009) Prog Org Coat 64:497–503

    Article  CAS  Google Scholar 

  59. Cook A, Gabriel A, Laycock N (2004) J Electrochem Soc 151(9):B529–B535

    Article  CAS  Google Scholar 

  60. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2003) Conductive electroactive polymers: intelligent materials systems, 2nd edn. CRC, Boca Raton

    Google Scholar 

  61. Omastová M, Mičušík M (2012) Chem Pap 66(5):392–414

    Article  Google Scholar 

  62. Rahman SU (2011) Surf Coat Technol 205:3035–3042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Naval Research Board (NRB) for providing the financial assistance, vide sanction no DNRD/05/4003/155 DATED 03/10/2008.

Dr. Mohammad Kashif is also thankful to CSIR (New Delhi, India) for financial support through Research Associateship (RA) against Grant No. 05/466 (0160)/2 K13-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashif, M., Ahmad, N. & Ahmad, S. Electrochemical corrosion resistance performance of sustainable resource-based nanoconducting polymer composites in alkaline medium. J Solid State Electrochem 18, 1855–1867 (2014). https://doi.org/10.1007/s10008-014-2424-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2424-0

Keywords

Navigation