Skip to main content
Log in

Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel foam-graphene (NF-G) was synthesized by chemical vapour deposition followed by facial in situ aqueous chemical growth of simonkolleite (Zn5(OH)8Cl2·H2O) under hydrothermal conditions to form NF-G/simonkolleite composite. X-ray diffraction and Raman spectroscopy show the presence of simonkolleite on the NF-G, while scanning and transmission electron microscopies show simonkolleite micro-plates like structure evenly distributed on the NF-G. Electrochemical measurements of the composite electrode give a specific capacitance of 350 Fg−1 at current density of 0.7 Ag−1 for our device measured in three-electrode configuration. The composite also shows a rate capability of ~87 % capacitance retention at a high current density of 5 Ag−1, which makes it a promising candidate as an electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller JR, Burke AF (2008) Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc Interf 17:53–57

    CAS  Google Scholar 

  2. Masarapu C, Zeng HF, Hung KH, Wei BQ (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206

    Article  CAS  Google Scholar 

  3. Li GR, Feng ZP, Ou YN, Wu DC, Fu RW, Tong YX (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213

    Article  CAS  Google Scholar 

  4. Du X, Guo P, Song HH, Chen XH (2010) Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim Acta 55:4812–4819

    Article  CAS  Google Scholar 

  5. Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  6. Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978

    Article  CAS  Google Scholar 

  7. Wang DC, Ni WB, Pang H, Lu QY, Huang ZJ, Zhao JW (2010) Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim Acta 55:6830–6835

    Article  CAS  Google Scholar 

  8. Pico F, Ibanez J, Rodenas L, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM (2008) Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. J. Power Sources 176:417–425

    Article  CAS  Google Scholar 

  9. Li FH, Song JF, Yang HF, Gan SY, Zhang QX, Han DX, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455602–455607

    Article  Google Scholar 

  10. Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  11. Qu QT, Shi Y, Li LL, Guo WL, Wua YP, Zhang HP, Guan SY, Holze R (2009) V2O5.0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11:1325–1328

    Article  CAS  Google Scholar 

  12. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  13. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  14. Lake JR, Cheng A, Selverston S, Tanaka Z, Koehne J, Meyyappan M, Che B (2012) Graphene metal oxide composite supercapacitor electrodes. J Vac Sci Technol B 30:03D118

    Google Scholar 

  15. Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422–3427

    Article  CAS  Google Scholar 

  16. Zhu J, Zhu T, Zhou X, Zhang Y, Lou XW, Chen X, Zhang H, Hng HH, Yan Q (2011) Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3:1084–1089

    Article  CAS  Google Scholar 

  17. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  18. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  19. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  20. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  21. Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369

    Article  CAS  Google Scholar 

  22. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  CAS  Google Scholar 

  23. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Graphene films with large domain size by a two-step chemical vapor deposition process. Science 324:1312–1314

    Article  CAS  Google Scholar 

  24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  25. Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  26. Pérez C, Collazo A, Izquierdo M, Merino P, Nóvoa XR (2000) Electrochemical impedance spectroscopy study of the corrosion process on coated galvanized steel in a salt spray fog chamber. Corros 56:1220–1232

    Article  Google Scholar 

  27. Zhu F, Persson D, Thierry D, Taxen C (2000) Formation of corrosion products on open and confined zinc surfaces exposed to periodic wet/dry conditions. Corros 56:1256–1265

    Article  CAS  Google Scholar 

  28. Hawthorne FC, Sokolova E (2002) Simonkolleite, Zn5(OH)8Cl2(H2O), a decorated interrupted-sheet structure of the form [Mφ2]4. Can Mineral 40:939–946

    Article  CAS  Google Scholar 

  29. Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Simonkolleite nano-platelets: synthesis and temperature effect on hydrogen gas sensing properties. App Surf Sci 258:7839–7843

    Article  CAS  Google Scholar 

  30. Nowacki W, Silverman JN (1961) Die kristallstruktur von zinkhydroxychlorid II Zn5(OH)8Cl2.1H2O. Z Krist 115:21–51

    Article  CAS  Google Scholar 

  31. Allmann R (1968) Verfeinerung der Struktur des Zinkhydroxidchlorids II Zn5(OH)8 Cl2.1H2O. Z Krist 126:417–426

    Article  CAS  Google Scholar 

  32. Wu YP, Wang B, Ma YF, Huang Y, Li N, Zhang F, Chen YS (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3:661–669

    Article  CAS  Google Scholar 

  33. Dong XC, Shi YM, Chen P, Ling QD, Huang W (2010) Aromatic molecules doping in single-layer graphene probed by Raman spectroscopy and electrostatic force microscopy. J J Appl Phys 49:01AH04

    Google Scholar 

  34. Wei D, Mitchell JI, Tansarawiput C, Nam W, Qi M, Ye PD, Xu X (2013) Laser direct synthesis of graphene on quartz. Carbon 53:374–379

    Article  CAS  Google Scholar 

  35. Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  36. Bernard MC, Hugot-Le Goff A, Massinon D, Phillips N (1993) Underpaint corrosion of zinc-coated steel sheet studied by in situ Raman spectroscopy. Corros Sci 35:1339–1349

    Article  CAS  Google Scholar 

  37. Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. J Chem Eur 17:10898–905

    Article  CAS  Google Scholar 

  38. Brownson Dale AC, Figueiredo-Filho Luiz CS, Ji X, Gómez-Mingot M, Iniesta J, Fatibello-Filho O, Kampouris DK, Banks CE (2013) Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. J Mater Chem A 1:5962–5972

    Article  Google Scholar 

  39. Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2009) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340

    Article  CAS  Google Scholar 

  40. Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049

    Article  CAS  Google Scholar 

  41. Choi BG, Hong J, Hong WH, Hammond PT, Park H (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213

    Article  CAS  Google Scholar 

  42. Frackowiak E, Begguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Vice-Chancellor of the University of Pretoria and the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Khamlich or N. Manyala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamlich, S., Bello, A., Fabiane, M. et al. Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J Solid State Electrochem 17, 2879–2886 (2013). https://doi.org/10.1007/s10008-013-2206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2206-0

Keywords

Navigation