Skip to main content
Log in

Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report on the electrochemical properties of layered manganese oxides, with and without cobalt substituents, as cathodes in sodium ion batteries. We fabricated sub-micrometre-sized particles of Na0.7MnO2 + z and Na0.7Co0.11Mn0.89O2 + z via combustion synthesis. X-ray diffraction revealed the same layered hexagonal P2-type bronze structure with high crystallinity for both materials. Potentiostatic and galvanostatic charge/discharge cycles in the range 1.5–3.8 V vs. Na | Na+ were performed to identify potential-dependent phase transitions, capacity, and capacity retention. After charging to 3.8 V, both materials had an initial discharge capacity of 138 mA h g−1 at a rate of 0.3 C. For the 20th cycle, those values reduced to 75 and 92 mA h g−1 for Co-free and Co-doped samples, respectively. Our findings indicate that earlier works probably underestimated the potential of (doped) P2-type Na0.7MnO2 + z as cathode material for sodium ion batteries in terms of capacity and cycle stability. Apart from doping, a simple optimization parameter seems to be the particle size of the active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Y, Wan C, Jiang C, Fang S (2002) Introduction, principles and advances of lithium secondary batteries. Tsinghua University Press, Beijing

    Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  3. Liu C, Li F, Ma L, Cheng H (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  4. Ceder G, Hautier G, Jain A, Ong SP (2012) MRS Bull 37:185–191

    Google Scholar 

  5. Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) J Power Sources 147:269–281

    Article  CAS  Google Scholar 

  6. Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491–3507

    Article  CAS  Google Scholar 

  7. Liu L, Tian F, Zhou M, Guo H, Wang X (2012) Electrochim Acta 70:360–364

    Article  CAS  Google Scholar 

  8. Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Energy Environ Sci 4:3985

    Article  CAS  Google Scholar 

  9. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) Electrochem Commun 13:1159–1162

    Article  CAS  Google Scholar 

  10. Ellis BL, Nazar LF (2012) Curr Opin Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  11. Chevrier VL, Ceder G (2011) J Electrochem Soc 158:A1011–A1014

    Article  CAS  Google Scholar 

  12. Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) Nat Mater 6:749–753

    Article  CAS  Google Scholar 

  13. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  14. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  15. Tarascon J-M, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  16. Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P (1971) J Solid State Chem 3:1–11

    Article  CAS  Google Scholar 

  17. Delmas C, Fouassier C, Hagenmuller P (1980) Physica B + C 99:81–85

    CAS  Google Scholar 

  18. Doeff MM, Anapolsky A, Edman L, Richardson TJ, De Jonghe LC (2001) J Electrochem Soc 148:A230–A236

    Article  CAS  Google Scholar 

  19. Eriksson TA, Lee YJ, Hollingsworth J, Reimer JA, Cairns EJ, Zhang X, Doeff MM (2003) Chem Mater 15:4456–4463

    Article  CAS  Google Scholar 

  20. Mendiboure A, Delmas C, Hagenmuller P (1985) J Solid State Chem 57:323–331

    Article  CAS  Google Scholar 

  21. Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG (2002) J Mater Chem 12:1142–1147

    Article  CAS  Google Scholar 

  22. Shao-Horn Y (1999) J Electrochem Soc 146:2404–2412

    Article  CAS  Google Scholar 

  23. Ma X, Chen H, Ceder G (2011) J Electrochem Soc 158:A1307–A1312

    Article  CAS  Google Scholar 

  24. Kim H, Kim D, Seo D, Yeom M, Kang K, Kim DK, Jung Y (2012) Chem Mater 24:1205–1211

    Article  CAS  Google Scholar 

  25. Tarascon J, Guyomard D, Wilkens B (1992) Solid State Ionics 57:113–120

    Article  CAS  Google Scholar 

  26. Sauvage F, Laffont L, Tarascon J-M, Baudrin E (2007) Inorg Chem 46:3289–3294

    Article  CAS  Google Scholar 

  27. Yang S, Wang X, Wang Y, Chen Q, Li J, Yang X (2010) T Nonferr Metal Soc 20:1892–1898

    Article  CAS  Google Scholar 

  28. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6–12

    Article  CAS  Google Scholar 

  29. Berthelot R, Carlier D, Delmas C (2011) Nat Mater 10:74–80

    Article  CAS  Google Scholar 

  30. Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) Dalton Trans 40:9306–9312

    Article  CAS  Google Scholar 

  31. Dollé M, Hollingsworth J, Richardson TJ, Doeff MM (2004) Solid State Ionics 175:225–228

    Article  Google Scholar 

  32. Dollé M, Patoux S, Doeff MM (2005) Chem Mater 17:1036–1043

    Article  Google Scholar 

  33. Rietveld HM (1969) J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  34. Rietveld HM (1967) Acta Crystallogr 22:151–152

    Article  CAS  Google Scholar 

  35. Cheary RW, Coelho A (1992) J Appl Crystallogr 25:109–121

    Article  CAS  Google Scholar 

  36. Lu Z, Donaberger RA, Dahn JR (2000) Chem Mater 12:3583–3590

    Article  CAS  Google Scholar 

  37. Shu G, Prodi A, Chu S, Lee Y, Sheu H, Chou F (2007) Phys Rev B Condens Matter 76:184115

    Article  Google Scholar 

  38. Meng YS, Hinuma Y, Ceder G (2008) J Chem Phys 128:104708

    Article  Google Scholar 

  39. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) Nat Mater 11:512–517

    Article  CAS  Google Scholar 

  40. Huang Q, Foo ML, Lynn JW, Zandbergen HW, Lawes G, Wang Y, Toby BH, Ramirez AP, Ong NP, Cava RJ (2004) J Phys Condens Matter 16:5803–5814

    Article  CAS  Google Scholar 

  41. Zandbergen H, Foo M, Xu Q, Kumar V, Cava R (2004) Phys Rev B Condens Matter 70:024101

    Article  Google Scholar 

  42. Zhang P, Capaz R, Cohen M, Louie S (2005) Phys Rev B Condens Matter 71:153102

    Article  Google Scholar 

  43. Robertson AD, Armstrong AR, Bruce PG (2001) Chem Mater 13:2380–2386

    Article  CAS  Google Scholar 

  44. Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R (2009) J Power Sources 194:1222–1225

    Article  CAS  Google Scholar 

  45. Wohlfahrt-Mehrens M, Butz A, Oesten R, Arnold G, Hemmer RP, Huggins RA (1997) J Power Sources 68:582–585

    Article  CAS  Google Scholar 

  46. Robertson AD, Armstrong AR, Paterson AJ, Duncan MJ, Bruce PG (2003) J Mater Chem 13:2367–2373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miss Han-Yi Chen, Miss Yin Ting Teng, and Mr. Jan Geder for their valuable help in conducting SEM, XRD, and BET measurements. This work was financially supported by the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhavi Srinivasan or Harry E. Hoster.

Additional information

Nicolas Bucher and Steffen Hartung contributed equally to this manuscript.

Dedicated to Prof. Wolf Vielstich on the occasion of his 90th birthday and in recognition of his contributions to electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucher, N., Hartung, S., Gocheva, I. et al. Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries. J Solid State Electrochem 17, 1923–1929 (2013). https://doi.org/10.1007/s10008-013-2047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2047-x

Keywords

Navigation