Skip to main content
Log in

Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous multi-walled carbon nanotubes (PCNTs) with multiple mesopores structure are synthesized through activation of multi-walled carbon nanotubes (MWCNTs) by potassium hydroxide. The potassium hydroxide activation process results in a significantly enhanced specific surface area with numerous small pores. The as-obtained PCNTs are employed as the conductive matrix for sulfur in the sulfur cathode. Compared with the composite sulfur cathode based on the original MWCNTs, the sulfur-PCNTs cathode shows a significantly improved cycle performance and columbic efficiency. The reversible capacity is 530 mAh g−1 and columbic efficiency is 90 % after 100 cycles at a current density of 100 mA g−1. The improvement in the electrochemical performance for S-PCNT is mainly attributed to the enlarged surface area and the porous structure of the unique mesopores carbon nanotube host, which cannot only facilitate transport of electrons and Li+ ions, but also trap polysulfides, retard the shuttle effect during charge/discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  3. Ohzuku T, Brodd RJ (2007) J Power Sources 174:449–456

    Article  CAS  Google Scholar 

  4. Ji X, Nazar LF (2010) J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  5. Akridge JR, Mikhaylik YV, White N (2004) Solid State Ionics 175:243–245

    Article  CAS  Google Scholar 

  6. Kolosnitsyn VS, Karaseva EV (2008) Russ J Electrochem 44:506–509

    Article  CAS  Google Scholar 

  7. Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) J Power Sources 89:219–226

    Article  CAS  Google Scholar 

  8. Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX (2006) Electrochem Commun 8:610–614

    Article  CAS  Google Scholar 

  9. Park CW, Ryu HS, Kim KW, Ahn JH, Lee JY, Ahn HJ (2007) J Power Sources 165:450–454

    Article  CAS  Google Scholar 

  10. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) J Electrochem Soc 156:A694–A702

    Article  CAS  Google Scholar 

  11. Jung Y, Kim S (2007) Electrochem Commun 9:249–254

    Article  CAS  Google Scholar 

  12. Sun J, Huang Y, Wang W, Yu Z, Wang A, Yuan K (2008) Electrochem Commun 10:930–933

    Article  CAS  Google Scholar 

  13. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  14. Han SC, Song MS, Lee H, Kim HS, Ahn HJ, Lee JY (2003) J Electrochem Soc 150:A889–A893

    Article  CAS  Google Scholar 

  15. Zheng W, Liu YW, Hu XG, Zhang CF (2006) Electrochim Acta 51:1330–1335

    Article  CAS  Google Scholar 

  16. Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:1141–1146

    Article  CAS  Google Scholar 

  17. Chen J, Jia X, She Q, Wang C, Zhang Q, Zheng M, Dong Q (2010) Electrochim Acta 55:8062–8066

    Article  CAS  Google Scholar 

  18. Wei W, Wang J, Zhou L, Yang J, Schumann B, NuLi Y (2011) Electrochem Commun 13:399–402

    Article  CAS  Google Scholar 

  19. Choi YJ, Kim KW, Ahn HJ, Ahn JH (2008) J Alloy Compd 449:313–316

    Article  CAS  Google Scholar 

  20. Wu F, Wu SX, Chen RJ, Chen S, Wang GQ (2009) Chin Chem Lett 20:1255–1258

    Article  CAS  Google Scholar 

  21. Lai C, Gao XP, Zhang B, Yan TY, Zhou Z (2009) J Phys Chem C 113:4712–4716

    Article  CAS  Google Scholar 

  22. Liang C, Dudney NJ, Howe JY (2009) Chem Mater 21:4724–4730

    Article  CAS  Google Scholar 

  23. Ji X, Lee KT, Nazar LF (2009) Nature Mater 8:500–506

    Article  CAS  Google Scholar 

  24. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Angew Chem Int Ed 50:1–6

    Article  Google Scholar 

  25. Sun M, Zhang S, Jiang T, Zhang L, Yu J (2008) Electrochem Commun 10:1819–1822

    Article  CAS  Google Scholar 

  26. Wu F, Wu S, Chen R, Chen J, Chen S (2010) Electrochem Solid-State Lett 13:A29–A31

    Article  CAS  Google Scholar 

  27. Qiu L, Zhang S, Zhang L, Sun M, Wang W (2010) Electrochim Acta 55:4632–4636

    Article  CAS  Google Scholar 

  28. He X, Ren J, Wang L, Pu W, Jiang C, Wan C (2009) J Power Sources 190:154–156

    Article  CAS  Google Scholar 

  29. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J (2007) Micropor Mesopor Mater 100:1–5

    Article  CAS  Google Scholar 

  30. Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Electrochim Acta 53:7730–7735

    Article  CAS  Google Scholar 

  31. Sing KSW (1982) Pure Appl Chem 54:2201–2218

    Article  Google Scholar 

  32. Shao CG, An HN, Wang X, Jia R, Zhao BJ, Ma Z, Li XY, Pan GQ, Li LB, Hong SM (2007) Macromolecules 40:9475–9481

    Article  CAS  Google Scholar 

  33. Steijns M, Mars P (1976) J Colloid Interface Sci 57:175–180

    Article  CAS  Google Scholar 

  34. Shinkarev VV, Fenelonov V, Kuvshinov GG (2003) Carbon 41:295–302

    Article  CAS  Google Scholar 

  35. Liang X, Wen Z, Liu Y, Wu M, Jin J, Zhang H, Wu X (2011) J Power Sources 196:9839–9843

    Article  CAS  Google Scholar 

  36. Barchasz C, Leprêtre JC, Alloin F, Patoux S (2012) J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  37. Chen J, Zhang Q, Shi Y, Qin L, Cao Y, Zheng M, Dong Q (2012) Phys Chem Chem Phys 14:5376–5382

    Article  CAS  Google Scholar 

  38. Zhang SS, Read JA (2012) J Power Sources 200:77–82

    Article  CAS  Google Scholar 

  39. Ji X, Evers S, Black R, Nazar LF (2011) Nature Commun 2:325. doi:10.1038/ncomms1293

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 50825203, 21273087 and 20803042), the 863 program (Grant No. 2011AA11290 and 2011DFB70020), and the PCSIRT (Program for Changjiang Scholars and Innovative Research Team in University). In addition, the authors thank Analytical and Testing Center of Huazhong University of Science and Technology for providing SEM, XRD, TG/DTA, and Raman spectra measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Xia Yuan or Yun-Hui Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Yuan, LX., Zhang, WX. et al. Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery. J Solid State Electrochem 17, 1641–1647 (2013). https://doi.org/10.1007/s10008-013-2023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2023-5

Keywords

Navigation