Skip to main content
Log in

Effect of infiltration material on a LSM15/CGO10 electrochemical reactor in the electrochemical oxidation of propene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of infiltrating on a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 11-layer electrochemical reactor with CeO2 and Ce0.8Pr0.2O2−δ was studied in propene oxidation at open-circuit voltage and under polarization as a function of reaction temperature. This work outlined the importance of catalytic and electrochemical properties of infiltrated material on the ability to increase propene conversion under polarization with good faradaic efficiency. Electrochemical impedance spectroscopy was used to study the effect of infiltration material on electrode properties. The infiltration of a mixed ionic and electronic conductor, like Ce0.8Pr0.2O2−δ , increased the electrode performance at low temperature but decreased the lifetime of the oxygen ion promoters on the catalyst/electrode surface, reducing the faradaic efficiency of the reaction. The infiltration of CeO2 provided high propene conversion at open circuit and high effect of polarization associated with good faradaic efficiency, especially at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wiartalla A, Ruhkamp L, Rosefort Y, Maassen B, Sliwinsky B, Schornbus T, Laible T (2011) SAE International 2011-01-2097

  2. Miller Kristin A (2007) N Engl Med 356:447–458

    Article  CAS  Google Scholar 

  3. Oberdoster G (2004) Inhalat Toxicol 16:437–445

    Article  Google Scholar 

  4. Jonhson TV (2011) SAE International 2011-01-0304

  5. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1–23

    Article  CAS  Google Scholar 

  6. Yamazoe N, Teraoka Y (1990) Catal Today 8:175–199

    Article  CAS  Google Scholar 

  7. Seyama T (1992) Catal Rev-Sci Eng 34:281–300

    Article  Google Scholar 

  8. Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P (2003) J Mol Catal 197:147–155

    Article  CAS  Google Scholar 

  9. Stoukides M, Vayenas CG (1981) J Catal 70:137–146

    Article  CAS  Google Scholar 

  10. Gaillard F, Li X, Uray M, Vernoux P (2004) Catal Lett 96:177–183

    Article  CAS  Google Scholar 

  11. Roche V, Siebert E, Steil MC, Deloume JP, Roux C, Pagnier T, Revel R, Vernoux P (2008) Ionics 14:235–241

    Article  CAS  Google Scholar 

  12. Tsiakaras P, Athanasiu C, Marnellos G, Stoukides M, ten Elshof JE, Bouwmeester HJM (1998) Appl Catal A 169:249–261

    Article  CAS  Google Scholar 

  13. Balomenou SP, Tsiplakides D, Vayenas CG, Poulston S, Houel V, Collier P, Konstandopoulos AG, Agrafiotis C (2007) Top Catal 44:481–486

    Article  CAS  Google Scholar 

  14. Twigg MV (2007) Appl Catal, B 70:2–15

    Article  CAS  Google Scholar 

  15. Zhao S, Gorte RJ (2003) Appl Catal A 248:9–18

    Article  CAS  Google Scholar 

  16. Werchmeister RML, Hansen KK, Mogensen M (2010) Mat Res Bull 45:1554–1561

    Article  CAS  Google Scholar 

  17. Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffée E (2002) J Appl Electrochem 32:875–882

    Article  CAS  Google Scholar 

  18. Kharton VV, Viskup AP, Figueiredo FM, Naumovich EN, Shaulo AL, Marques FMB (2002) Mater Lett 53:160–164

    Article  CAS  Google Scholar 

  19. Ippolito D, Andersen KB, Hansen KK (2012) J Electrochem Soc 159:P1–P8

    Article  Google Scholar 

  20. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park SE (2009) J Phys Chem C 113:15882–15890

    Article  CAS  Google Scholar 

  21. Putna ES, Vohs JM, Gorte RJ, Graham GW (1998) Catal Lett 54:17–21

    Article  CAS  Google Scholar 

  22. Zhao S, Gorte J (2004) Appl Catal A 277:129–136

    Article  CAS  Google Scholar 

  23. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ionics 129:63–94

    Article  CAS  Google Scholar 

  24. Endler C, Leonide A, Weber A, Tietz F, Ivers-Tiffée E (2010) J Electrochem Soc 157:B292–B298

    Article  CAS  Google Scholar 

  25. Boukamp BA, Verbraeken M, Blank DHA, Holtappels P (2003) Solid State Ionics 157:29–33

    Article  CAS  Google Scholar 

  26. Zheng Y, Ran R, Qiao SZ, Shao Z (2012) Int J Hydrog Energy 37:4328–4338

    Article  CAS  Google Scholar 

  27. Fagg DP, Perez-Coll D, Nunez P, Frade JR, Shaula AL, Yaremchenko AA, Kharton VV (2009) Solid State Ionics 180:896–899

    Article  CAS  Google Scholar 

  28. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, 1st edn. Wiley & Sons, Inc., Hoboken, New Jersey

    Book  Google Scholar 

  29. Adler SB (1998) Solid State Ionics 111:125–134

    Article  CAS  Google Scholar 

  30. Hjalmarsson P, Mogensen M (2011) J Power Sources 196:7237–7244

    Article  CAS  Google Scholar 

  31. Kim JD, Kim GD, Moon JW, Park Y (2001) Solid State Ionics 143:379–389

    Article  CAS  Google Scholar 

  32. Borja CJ, Dorado F, de Lucas-Consuegra A, Vargas JMG, Valverde JL (2011) Fuel Cell 1:131–139

    Article  Google Scholar 

  33. Bultel L, Henault M, Roux C, Siebert C, Beguin B, Gaillard F, Primet M, Vernoux P (2002) Ionics 8:136–141

    Article  CAS  Google Scholar 

  34. Kaloyannis A, Vayeans CG (1999) J Catal 182:37–47

    Article  CAS  Google Scholar 

  35. Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ionics 136–137:863–872

  36. Kambolis A, Lizzaraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochem Commun 19:5–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all technical staff. This work was supported by Danish Strategy Research Council under the project 09–065186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ippolito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ippolito, D., Hansen, K.K. Effect of infiltration material on a LSM15/CGO10 electrochemical reactor in the electrochemical oxidation of propene. J Solid State Electrochem 17, 895–908 (2013). https://doi.org/10.1007/s10008-012-1941-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1941-y

Keywords

Navigation