Skip to main content
Log in

Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, gold nanoparticles lower than 10 nm were prepared in an aqueous medium using two charged silsesquioxanes, the propylpyridinium chloride and propyl-1-azonia-4-azabicyclo[2.2.2]octane chloride, as stabilizer agents which revealed to be water-soluble. This stabilization method is innovative allowing thin films containing gold nanoparticles to be obtained, and it was used for the first time in the preparation of carbon paste electrodes (CPEs). The charged silsesquioxanes were characterized by liquid 13C NMR. The gold nanoparticle/silsesquioxane systems were characterized by ultraviolet–visible spectroscopy (UV–Vis) and transmission electron microscopy. In sequence, they were immobilized on silica matrix coated with aluminum oxide. The resulting solid materials designated as Au-Py/AlSi and Au-Db/AlSi were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The results showed that the gold nanoparticle/silsesquioxane systems are strongly adhered to the surface-forming thin films. The Au-Py/AlSi and Au-Db/AlSi materials were used to prepare CPEs for the electrooxidation of nitrite (NO 2 ) using cyclic voltammetry and differential pulse voltammetry. The Au-Py/AlSi and Au-Db/AlSi CPEs showed high sensitivity and detection limits of 71.87 and 53.66 μA mmol–1 L and 1.3 and 3.0 μmol L–1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Nature Mater 7:442–453

    Article  CAS  Google Scholar 

  2. Zanfrognini B, Zanardi C, Terzi F, Aaritalo T, Viinikanoja A, Lukkari J, Seeber R (2011) J Solid State Electrochem 15:2395–2400

    Article  CAS  Google Scholar 

  3. Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  4. Petryayeva E, Krull UJ (2011) Anal Chim Acta 706:8–24

    Article  CAS  Google Scholar 

  5. Nath S, Jana S, Pradhan M, Pal T (2011) J Colloid Interface Sci 341:333–352

    Article  Google Scholar 

  6. Ma Z, Yu J, Dai S (2010) Adv Mat 22:261–285

    Article  CAS  Google Scholar 

  7. Liu S, Tang Z (2010) J Mater Chem 20:24–35

    Article  Google Scholar 

  8. Belyakova OA, Slovkhotov YL (2003) Russ Chem Bull 52:2299–2327

    Article  CAS  Google Scholar 

  9. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663–12676

    Article  CAS  Google Scholar 

  10. Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  11. Jin Y, Li A, Hazelton SG, Liang S, John CL, Selid PD, Pierce DT, Zhao JX (2009) Coord Chem Rev 253:2998–3014

    Article  CAS  Google Scholar 

  12. Marambio-Jones C, Hoek EMV (2010) J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  13. Leroux Y, Lacroix JC, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn JR (2009) Nano Lett 9:2144–2148

    Article  CAS  Google Scholar 

  14. Willets KA, Duyne RPV (2007) Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  15. Zhao X, Mai Z, Kang X, Dai Z, Zou X (2008) Electrochem Acta 53:4732–4739

    Article  CAS  Google Scholar 

  16. Campbell FW, Compton RG (2010) Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  17. Liu S, Thang Z (2010) J Mater Chem 20:24–35

    Article  Google Scholar 

  18. Viddoti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) J Braz Chem Soc 22:3–20

    Article  Google Scholar 

  19. Zhang X, Guo Q, Cui D (2009) Sensors 9:1033–1053

    Article  CAS  Google Scholar 

  20. Pingarrón JM, Yáñes-Sedeño P, Gonzáles-Cortés A (2008) Electrochim Acta 53:5848–5866

    Article  Google Scholar 

  21. Lin A-J, Wen Y, Zhang L-J, Lu B, Li Y, Jiao Y-Z, Yang H-F (2011) Electrochim Acta 56:1030–1036

    Article  CAS  Google Scholar 

  22. Maduraiveeran G, Ramaraj R (2007) Electrochem Commun 9:2051–2055

    Article  CAS  Google Scholar 

  23. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  24. Aiken JD, Finke RG (1999) J Mol Catal A 145:1–44

    Article  CAS  Google Scholar 

  25. Laranjo MT, Kist KBL, Benvenutti EV, Gallas MR, Costa TMH (2011) J Nanopart Res 13:4987–4995

    Article  CAS  Google Scholar 

  26. Esumi K, Takei N, Yoshimura T (2003) Colloid Surf B 32:117–123

    Article  CAS  Google Scholar 

  27. Daniel M-C, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  28. Huang HZ, Qiang Y, Yang XR (2005) J Colloid Interface Sci 282:26–31

    Article  CAS  Google Scholar 

  29. Chang C-C, Chen P-H, Chang C-M (2008) J Sol–gel Part Sci Technol 47:268–273

    Article  CAS  Google Scholar 

  30. Bharathi S, Lev O (1997) Chem Commun 23:2303–2304

    Article  Google Scholar 

  31. Flavel BS, Nussio MR, Quinton JS, Shapter JG (2009) J Nanopart Res 11:2013–2022

    Article  CAS  Google Scholar 

  32. Shibata S, Miyajima K, Kimura Y, Yano T (2004) J Sol–gel Part Sci Technol 31:123–130

    Article  CAS  Google Scholar 

  33. Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Quim Nova 32:1926–1933

    Article  CAS  Google Scholar 

  34. Gushikem Y, Benvenutti EV, Kholin Y (2008) Pure Appl Chem 80:1593–1611

    Article  CAS  Google Scholar 

  35. Nunes MR, Gushikem Y, Landers R, Dupont J, Costa TMH, Benvenutti EV (2012) Charged silsesquioxane used as a vehicle for gold nanoparticles to perform the synthesis of catalyst xerogels. J Sol–gel Part Sci Technol. doi:10.1007/s10971-012-2696-8

  36. Arenas LT, Langaro A, Gushikem Y, Moro CC, Benvenutti EV, Costa TMH (2003) J Sol–gel Part Sci Technol 28:51–56

    Article  CAS  Google Scholar 

  37. Lucho AMS, Pissetti FL, Gushikem Y (2004) J Colloid Interface Sci 275:251–256

    Article  CAS  Google Scholar 

  38. Arenas LT, Dias SLP, Moro CC, Costa TMH, Benvenutti EV, Lucho AMS, Gushikem Y (2006) J Colloid Interface Sci 297:244–250

    Article  CAS  Google Scholar 

  39. Arenas LT, Gay DSF, Moro CC, Dias SLP, Azambuja DS, Costa TMH, Benvenutti EV, Gushikem Y (2008) Micropor Mesopor Mater 112:273–283

    Article  CAS  Google Scholar 

  40. Vuk AS, Jovanovski V, Pollet-Villard A, Jerman I, Orel B (2008) Solar Energy Mater Solar Cells 92:126–135

    Article  Google Scholar 

  41. Arguello J, Magosso HA, Landers R, Gushikem Y (2008) J Electroanal Chem 617:45–52

    Article  CAS  Google Scholar 

  42. Magosso HA, Luz RCS, Gushikem Y (2010) Electroanalysis 22:216–222

    Article  CAS  Google Scholar 

  43. Arguello J, Magosso HA, Landers R, Pimentel VL, Gushikem Y (2010) Electrochim Acta 56:340–345

    Article  CAS  Google Scholar 

  44. Mirvish SS (1995) Cancer Lett 93:17–48

    Article  CAS  Google Scholar 

  45. Bedioui F, Villeneuve N (2003) Electroanalysis 15:5–18

    Article  CAS  Google Scholar 

  46. Cônsul JMD, Baibich IM, Benvenutti EV, Thiele D (2005) Quim Nova 28:393–396

    Article  Google Scholar 

  47. Foschiera JL, Pizzolato TM, Benvenutti EV (2001) J Braz Chem Soc 12:159–164

    Article  CAS  Google Scholar 

  48. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, London

    Google Scholar 

  49. Auler LMLA, Silva CR, Collins KE, Collins CH (2005) J Chromatogr A 1073:147–153

    Article  CAS  Google Scholar 

  50. Splendorea G, Benvenutti EV, Kholin YV, Gushikem Y (2005) J Braz Chem Soc 16:147–152

    Article  Google Scholar 

  51. Yguerabide J, Yguerabide EE (1998) Anal Biochem 262:137–156

    Article  CAS  Google Scholar 

  52. Benvenutti EV, Gushikem Y, Davanzo CU (1992) Appl Spectrosc 46:1474–1476

    Article  CAS  Google Scholar 

  53. Arenas LT, Aguirre TAS, Langaro A, Gushikem Y, Benvenutti EV, Costa TMH (2003) Polymer 44:5521–5525

    Article  CAS  Google Scholar 

  54. Pavan FA, Gobbi SA, Costa TMH, Benvenutti EV (2002) J Thermal Anal Calorim 68:199–206

    Article  CAS  Google Scholar 

  55. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood, England

    Google Scholar 

  56. Zhu Z, Song W, Burugapalli K, Moussy F, Li Y-L, Zhong X-H (2010) Nanotechnology 21:165501–165510

    Article  Google Scholar 

  57. Bonanni A, Pumera M, Miyahara Y (2011) Phys Chem Chem Phys 13:4980–4986

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  59. Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Biosens Bioelectron 24:3242–3247

    Article  CAS  Google Scholar 

  60. Lin C-Y, Balamurugan A, Lai Y-H, Ho K-C (2010) Talanta 82:1905–1911

    Article  CAS  Google Scholar 

  61. Pournaghi-Azar MH, Dastangoo H (2004) J Electroanal Chem 567:211–218

    Article  CAS  Google Scholar 

  62. Arenas LT, Villis PCM, Arguello J, Landers R, Benvenutti EV, Gushikem Y (2010) Talanta 83:241–248

    Article  CAS  Google Scholar 

  63. Analytical Methods Committee (1987) Analyst 112:199–204

    Article  Google Scholar 

  64. Jing L (2009) Chin J Chem 27:2373–2378

    Article  Google Scholar 

  65. Yu C, Guo J, Gu H (2010) Electroanalysis 22:1005–1011

    Article  CAS  Google Scholar 

  66. Ge X, Wang L, Liu Z, Ding Y (2011) Electroanalysis 23:381–386

    Article  CAS  Google Scholar 

  67. da Silva SM, Mazo LH (1998) Electroanalysis 10:1200–1203

    Article  Google Scholar 

  68. Cui Y, Yang C, Zeng W, Oyama M, Pu W, Zhang J (2007) Anal Sci 23:1421–1425

    Article  CAS  Google Scholar 

  69. Liu Y, Gu H-Y (2008) Microchim Acta 162:101–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul and Coordenação de Aperfeiçoamento Pessoal de Nível Superior for grants and financial support. We also thank the Centro de Microscopia Eletrônica da Universidade Federal do Rio Grande do Sul for the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilson V. Benvenutti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Menezes, E.W., Nunes, M.R., Arenas, L.T. et al. Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite. J Solid State Electrochem 16, 3703–3713 (2012). https://doi.org/10.1007/s10008-012-1782-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1782-8

Keywords

Navigation