Skip to main content
Log in

Electrochemical sensor using glassy carbon electrode modified with acylpyrazolone-multiwalled carbon nanotube composite film for determination of xanthine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemical sensor 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone/multiwalled carbon nanotubes/glassy carbon electrode (GCE) was prepared for the determination of xanthine (XN) in the presence of an excess of uric acid. Cyclic voltammetry and differential pulse voltammetry were used to characterize the electrode. The oxidation of XN occurred in a well-defined peak having E p 0.73 V in phosphate buffer solution of pH 6.0. Compared with the bare GCE, the electrochemical sensor greatly enhanced the oxidation signal of XN with negative shift in peak potential about 110 mV. Based on this, a sensitive, rapid, and convenient electrochemical method for the determination of XN has been proposed. Under the optimized conditions, the oxidation peak current of XN was found to be proportional to its concentration in the range of 0.3~50 μM with a detection limit of 0.08 μM. The analytical utility of the proposed method was demonstrated by the direct assay of XN in urine samples and was found to be promising at our preliminary experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palraj K, Abraham SJ (2010) Talanta 80:1686–1691

    Article  Google Scholar 

  2. Palraj K, Abraham SJ (2009) Anal Chim Acta 647:97–103

    Article  Google Scholar 

  3. Guilbault GG (1984) Analytical uses of immobilized enzymes. Marcel Dekker, New York

    Google Scholar 

  4. Villalonga R, Matos M, Cao R (2007) Electrochem Commun 9:454–458

    Article  CAS  Google Scholar 

  5. Kirgoz UA, Timur S, Wang J, Telefoncu A (2004) Electrochem Commun 6:913–916

    Article  Google Scholar 

  6. Arslan F, Yaşar A, Kılıç E (2006) Artif Cell Blood Substit Biotechnol 34:113–128

    Article  Google Scholar 

  7. Sun D, Zhang Y, Wang FR, Wu KB, Chen JW, Zhou YK (2009) Sensor Actuator B Chem 141:641–645

    Article  Google Scholar 

  8. Zen JM, Lai YY, Yang HH, Senthil KA (2002) Sensor Actuator B Chem 84:237–244

    Article  Google Scholar 

  9. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  10. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  11. Iijima S (2002) Phys B 323:1–5

    Article  CAS  Google Scholar 

  12. Yang LJ, Tang C, Xiong HY, Zhang XH, Wang SF (2009) Bioelectrochemistry 75:158–162

    Article  CAS  Google Scholar 

  13. Moraes FC, Mascaro LH, Machado SAS, Brett CMA (2009) Talanta 79:1406–1411

    Article  CAS  Google Scholar 

  14. Wu YH (2010) Food Chem 121:580–584

    Article  CAS  Google Scholar 

  15. Andrews R, Weisenberger MC (2004) Curr Opin Solid State Mater Sci 8:31–37

    Article  CAS  Google Scholar 

  16. Manisankar P, Abirama Sundari PL, Sasikumar R, Palaniappan SP (2008) Talanta 76:1022–1028

    Article  CAS  Google Scholar 

  17. Nishihama S, Hirai T, Komasawa I (2001) Ind Eng Chem Res 40:3085–3091

    Article  CAS  Google Scholar 

  18. Marchetti F, Pettinari C, Pettinari R (2005) Coord Chem Rev 249:2909–2945

    Article  CAS  Google Scholar 

  19. Ghoneim MM, El-Desoky HS, Amer SA, Rizk HF, Habazy AD (2008) Dyes Pigments 77:493–501

    Article  CAS  Google Scholar 

  20. Zhang D, Li JZ (2008) Anal Lett 41:2832–2843

    Article  CAS  Google Scholar 

  21. Li FH, Chai J, Yang HF, Han DX, Niu L (2010) Talanta 81:1063–1068

    Article  CAS  Google Scholar 

  22. Dong XC, Liu FC, Zhao YL (1983) Acta Chim Sinica 41:848–852

    CAS  Google Scholar 

  23. Wei S, Li YZ, Duan YY, Jiao K (2008) Biosens Bioelectron 24:988–993

    Article  Google Scholar 

  24. Anik U, Cubukcu M (2008) Turk J Chem 32:711–719

    CAS  Google Scholar 

  25. Kumar AS, Swetha P (2010) J Electroanal Chem 642:135–142

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Nature Science Foundation of Heilongjiang Province, People's Republic of China (No. B201004) and the Scientific and Technical Development Foundation of Harbin Normal University (No. 08XYG-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhou Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Li, J. Electrochemical sensor using glassy carbon electrode modified with acylpyrazolone-multiwalled carbon nanotube composite film for determination of xanthine. J Solid State Electrochem 16, 689–695 (2012). https://doi.org/10.1007/s10008-011-1419-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1419-3

Keywords

Navigation