Skip to main content
Log in

Effect of mono- (Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A study on the structural and electrochemical properties of LiCr0.2Mn1.8O4 and LiV0.2Cr0.2Mn1.6O4 cathodes has been made with a view to understand the effect of mono- (Cr) and bication (Cr and V) substitution on LiMn2O4 spinel individually. Citric acid assisted modified sol–gel method has been followed to synthesize a series of LiMn2O4, LiCr0.2Mn1.8O4, and LiV0.2Cr0.2Mn1.6O4 cathodes, and the corresponding lattice structure, surface morphology, and site occupancy of lithium in the spinel matrix are acknowledged using X-ray diffraction, scanning electron microscopy, and magic angle spinning 7Li nuclear magnetic resonance results. The site occupancy of Cr3+ in the 16d octahedral and that of V5+ in the 16d octahedral and 8a tetrahedral positions are understood. Electrochemical cycling studies of LiCr0.2Mn1.8O4 cathode demonstrate an enhanced structural stability and better capacity retention (94%) resulting from the Cr3+ dopant-induced co-valency of Li-O-Mn bond. On the other hand, simultaneous substitution of Cr and V in LiV0.2Cr0.2Mn1.6O4 has failed to improve the electrochemical properties of native LiMn2O4 spinel cathode, mainly due to vanadium-driven cation mixing and the reduced lithium diffusion kinetics. Among the candidates chosen for the study, LiCr0.2Mn1.8O4 qualifies itself as a better cathode for rechargeable lithium battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461–472

    Article  CAS  Google Scholar 

  2. Lee YJ, Wang F, Grey CP (1998) J Am Chem Soc 120:2601–12613

    Google Scholar 

  3. Ramana CV, Massot M, Julien CM (2005) Surf Interface Anal 37:412–416

    Article  CAS  Google Scholar 

  4. Grey CP, Dupre N (2004) Chem Rev 104:4493–4512

    Article  CAS  Google Scholar 

  5. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  6. Ohzuku T, Makimura Y (2001) Chem Lett 30:744

    Article  Google Scholar 

  7. Nagaura T, Tozawa K (1990) Prog Batteries Sol Cells 9:209

    CAS  Google Scholar 

  8. Tucker MC, Reimer JA, Cairns EJ (2002) J Electrochem Soc 149:A574–A585

    Article  CAS  Google Scholar 

  9. Fu YP, Su YH, Lin CH (2004) Solid State Ionics 166:137–146

    Article  CAS  Google Scholar 

  10. Tucker MC, Kroeck L, Reimer JA, Cairns EJ (2002) J Electrochem Soc 149:A1409–A1413

    Article  CAS  Google Scholar 

  11. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Solid State Ionics 81:167–170

    Article  CAS  Google Scholar 

  12. Hu Y, Liu YH (2005) Mater Chem Phys 90:255–261

    Article  CAS  Google Scholar 

  13. Jayaprakash N, Kalaiselvi N, Periasamy P (2007) Nanotechnology 19:025603–025608

    Article  Google Scholar 

  14. Jayaprakash N, Sathiyanarayanan K, Kalaiselvi N (2007) Electrochim Acta 52:2453–2460

    Article  CAS  Google Scholar 

  15. Kalaiselvi N, Doh CH, Park CW, Moon SI, Yun MS (2004) Electrochem Commun 6:1110–1113

    Article  CAS  Google Scholar 

  16. Rojas RM, Petrov K, Avdeev G, Amarilla JM, Pascual L, Rojo JM (2007) J Therm Anal Calorim 90:67–72

    Article  CAS  Google Scholar 

  17. Morgan KR, Collier S, Burns G, Ooi K (1994) J Chem Soc Chem Commun 2:1719–1720

    Article  Google Scholar 

  18. Treuil N, Labruge’re C, Menetrier M, Portier J, Campet G, Deshayes A, Frison JC, Hwang SJ, Song SW, Choy JH (1999) J Phys Chem B 103:2100–2106

    Article  CAS  Google Scholar 

  19. Jayaprakash N, Kalaiselvi N, Gangulibabu, Bhuvaneswari (2010) Electrochimica Acta (in press)

  20. Takahashi M, Tobishima SI, Takei K, Sakurai Y (2002) Solid State Ionics 148:283–289

    Article  CAS  Google Scholar 

  21. Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) J Electrochem Soc 143:1821–1827

    Article  CAS  Google Scholar 

  22. Kalyani P, Kalaiselvi N, Renganathan NG (2005) Mater Chem Phys 90:196–202

    Article  CAS  Google Scholar 

  23. Tang SB, Lai MO, Lu L (2006) Electrochim Acta 52:1161–1168

    Article  CAS  Google Scholar 

  24. He BL, Zhou WJ, Liang YY, Bao SJ, Li HL (2006) J Colloid Interfac Sci 300:633–639

    Article  CAS  Google Scholar 

  25. Tang SB, Lai MO, Lu L (2007) J Power Sources 164:372–378

    Article  CAS  Google Scholar 

  26. Sigala C, Verbaere A, Mansot JL, Guyomard D, Piffard Y, Tournoux M (1997) J Solid State Chem 132:372–381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), India for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kalaiselvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaprakash, N., Kalaiselvi, N., Gangulibabu et al. Effect of mono- (Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes. J Solid State Electrochem 15, 1243–1251 (2011). https://doi.org/10.1007/s10008-010-1194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1194-6

Keywords

Navigation