Skip to main content
Log in

Nitric oxide measurement in biological and pharmaceutical samples by an electrochemical sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nitric oxide (NO) electrochemical sensor was developed via one-step construction of gold nanoparticles (GNPs)–chitosan (CS) nanocomposite sensing film on a glassy carbon electrode (GCE) surface. This method is very simple and convenient. The GNPs–CS film which is controllable and stable exhibits catalytic activity to NO oxidation. The anodic peak potential significantly shifted negatively compared with that at bare GCE. The high sensitivity and good stability of developed method have been coupled to a wide linear range from 3.60 × 10−8 to 4.32 × 10−5 M for the quantitative analysis of NO. The detection limit of 7.20 nM is much lower than the vast majority of reported methods. This NO sensor has been successfully applied to NO measurement in biological and pharmaceutical samples. Real-time amperometric data show that the addition of L-arginine (L-Arg) can cause a slow release of NO from a whole rat kidney with a maximum concentration of ca. 150 nM. The concentration of NO monitoring from the drug sample was calculated to be ca. 1.60 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palmer R, Ferrige A, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  Google Scholar 

  2. Ignarro LJ, Buga G, Wood K, Byrns R, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84:9265–9269

    Article  CAS  Google Scholar 

  3. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  Google Scholar 

  4. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Article  CAS  Google Scholar 

  5. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  Google Scholar 

  6. Harrison DG (1997) Perspective series: nitric oxide and nitric oxide synthases. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    Article  CAS  Google Scholar 

  7. Yokozawa T, Chen CP (2001) Evidence suggesting a nitric oxide-scavenging activity for traditional crude drugs, and action mechanisms of sanguisorbae radix against oxidative stress and aging. J Amer Aging Assoc 24:19–30

    CAS  Google Scholar 

  8. Mccann SM, Licinio J, Wong ML, Yu WH, Karanth S, Rettorri V (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826

    Article  CAS  Google Scholar 

  9. Taha ZH (2003) Nitric oxide measurements in biological samples. Talanta 61:3–10

    Article  CAS  Google Scholar 

  10. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol 271:C1424–C1437

    CAS  Google Scholar 

  11. Kelm M (1999) Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1411:273–289

    Article  CAS  Google Scholar 

  12. Shibuki K (1989) Calcium-dependent and ouabain-resistant oxygen consumption in the rat neurohypophysis. Brain Res 487:96–104

    Article  CAS  Google Scholar 

  13. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    Article  CAS  Google Scholar 

  14. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2009) Advances in electrochemical science and engineering: chemically modified electrodes, vol 11. Wiley-VCH, Weinheim, p 197

    Google Scholar 

  15. Arben M (2007) Nanobiomaterials in electroanalysis. Electroanalysis 19:739–741

    Article  Google Scholar 

  16. Du FY, Huang WH, Shi YX, Wang ZL, Cheng JK (2008) Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosens Bioelectron 24:415–421

    Article  CAS  Google Scholar 

  17. Zhang L, Tian DB, Zhu JJ (2008) Direct electrochemistry and electrochemical catalysis of myoglobin–TiO2 coated multiwalled carbon nanotubes modified electrode. Bioelectrochemistry 74:157–163

    Article  CAS  Google Scholar 

  18. Zhang L, Fang Z, Zhao GC, Wei XW (2008) Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. Inter J Electrochem Sci 3:746–754

    Google Scholar 

  19. Zheng DY, Hu CG, Peng YF, Yue WQ, Hu SS (2008) Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor. Electrochem Commun 10:90–94

    Article  CAS  Google Scholar 

  20. Wu FH, Zhao GC, Wei XW (2004) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Commun 4:690–694

    Article  Google Scholar 

  21. Yang J, Pang FY, Zhang RY, Xu Y, He PG, Fang YZ (2008) Electrochemistry and electrocatalysis of hemoglobin on 1-pyrenebutanoic acid succinimidyl ester/multiwalled carbon nanotube and Au nanoparticle modified electrode. Electroanalysis 20:2134–2140

    Article  CAS  Google Scholar 

  22. Tu WW, Lei JP, Ju HX (2008) Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem Commun 10:766–769

    Article  CAS  Google Scholar 

  23. Silva JF, Griveau S, Richard C, Zagal JH, Bedioui F (2007) Glassy carbon electrodes modified with single walled carbon nanotubes and cobalt phthalocyanine and nickel tetrasulfonated phthalocyanine: highly stable new hybrids with enhanced electrocatalytic performances. Electrochem Commun 9:1629–1634

    Article  Google Scholar 

  24. Li CM, Zang JF, Zhan DP, Chen W, Sun CQ, Teo AL, Chua YT, Lee VS, Moochhala SM (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanalysis 18:713–718

    Article  Google Scholar 

  25. He Q, Zheng DY, Hu SS (2009) Development and application of a nano-alumina based nitric oxide sensor. Microchim Acta 164:459–464

    Article  CAS  Google Scholar 

  26. Milsom EV, Novak J, Oyama M, Marken F (2007) Electrocatalytic oxidation of nitric oxide at TiO2-Au nanocomposite film electrodes. Electrochem Commun 9:436–442

    Article  CAS  Google Scholar 

  27. Guo L, Huang QJ, Li XY, Yang SH (2006) PVP-coated iron nanocrystals: anhydrous synthesis, characterization, and electrocatalysis for two species. Langmuir 22:7867–7872

    Article  CAS  Google Scholar 

  28. Wang HY, Huang YG, Tan Z, Hu XY (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17

    Article  CAS  Google Scholar 

  29. Lei CH, Wollenberger U, Bistolas N, Guiseppi-Elie A, Scheller FW (2002) Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles. Anal Bioanal Chem 372:235–239

    Article  CAS  Google Scholar 

  30. Xu JH, Hu CG, Ji YP, Hu SS (2009) Ultrathin gold film deposited on human hair: derivation from nanoparticles and applications as microsensors. Electrochem Commun 11:764–767

    Article  CAS  Google Scholar 

  31. Thangavel S, Ramaraj R (2008) Polymer membrane stabilized gold nanostructures modified electrode and its application in nitric oxide detection. J Phys Chem C 112:19825–19830

    Article  CAS  Google Scholar 

  32. Li YJ, Liu C, Yang MH, He Y, Yeung ES (2008) Large-scale self-assembly of hydrophilic gold nanoparticles at oil/water interface and their electro-oxidation for nitric oxide in solution. J Electroanal Chem 622:103–108

    Article  CAS  Google Scholar 

  33. Zhang JD, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299–306

    Article  CAS  Google Scholar 

  34. Gu HY, Lu SY, Jiang QY, Yu CM, Li GX, Chen HY (2006) A novel nitric oxide cellular biosensor based on red blood cells immobilized on gold nanoparticles. Anal Lett 39:2849–2859

    Article  CAS  Google Scholar 

  35. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  36. Brown KR, Fox AP, Natan MJ (1996) Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc 118:1154–1157

    Article  CAS  Google Scholar 

  37. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  38. Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY (2005) Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 21:190–196

    Article  CAS  Google Scholar 

  39. Yang YH, Yang HF, Yang MH, Liu YL, Shen GL, Yu RQ (2004) Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix. Anal Chim Acta 525:213–220

    Article  CAS  Google Scholar 

  40. Fahnestock KJ, Manesse M, McIlwee HA, Schauer CL, Boukherroub R, Szunerits S (2009) Selective detection of hexachromium ions by localized surface plasmon resonance measurements using gold nanoparticles/chitosan composite interfaces. Analyst 5:881–886

    Article  Google Scholar 

  41. McIlwee HA, Schauer CL, Praig VG, Boukherroub R, Szunerits S (2008) Thin chitosan films as a platform for SPR sensing of ferric ions. Analyst 5:673–677

    Article  Google Scholar 

  42. Guo SJ, Wang EK (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  43. Butler AR, Williams DLH (1993) The physiological role of nitric oxide. Chem Soc Rev 22:233–241

    Article  CAS  Google Scholar 

  44. Lee Y, Kim J (2007) Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues. Anal Chem 79:7669–7675

    Article  CAS  Google Scholar 

  45. Luo XL, Xu JJ, Du Y, Chen HY (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by onestep electrodeposition. Anal Biochem 334:284–289

    Article  CAS  Google Scholar 

  46. Xue MH, Xu Q, Zhou M, Zhu JJ (2006) In situ immobilization of glucose oxidase in chitosan–nanoparticle hybrid film on Prussian Blue modified for high-sensitivity glucose detection. Electrochem Commun 8:1468–1474

    Article  CAS  Google Scholar 

  47. Feng D, Wang F, Chen ZL (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens Actuators B-Chem 138:539–544

    Article  Google Scholar 

  48. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    Article  CAS  Google Scholar 

  49. Bachmann S, Mundel P (1994) Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 24:112–129

    CAS  Google Scholar 

  50. Lahera V, Navarro CJ, Cachofeiro V, García-Estañ J, Ruilope LM (1997) Nitric oxide, the kidney, and hypertension. Am J Hypertens 10:129–140

    Article  CAS  Google Scholar 

  51. Peng YF, Hu CG, Zheng DY, Hu SS (2008) A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode. Sens Actuators B-Chem 133:571–576

    Article  Google Scholar 

  52. Peng YF, Ji YP, Zheng DY, Hu SS (2009) In situ monitoring of nitric oxide release from rat kidney at poly(eosin b)-ionic liquid composite-based electrochemical sensors. Sens Actuators B-Chem 137:656–661

    Article  Google Scholar 

  53. Lee Y, Yang J, Rudich SM, Schreiner RJ, Meyerhoff ME (2004) Improved planar amperometric nitric oxide sensor based on platinized platinum anode. 2. direct real-time measurement of NO generated from porcine kidney slices in the presence of l-arginine, l-arginine polymers, and protamine. Anal Chem 76:545–551

    Article  CAS  Google Scholar 

  54. Yu A, Liang Z, Cho J, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203–1207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the start-up fund for Luojia Chair Professorship of Wuhan University (nos. 306276216 and 306271159), the National Scientific Foundation of China (NSFC nos. 20775055, 30973672, 90817103, and 6080102.0), the Important National Science and Technology Specific Projects (no. 2009ZX09301-14), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Deng, X., Wang, W. et al. Nitric oxide measurement in biological and pharmaceutical samples by an electrochemical sensor. J Solid State Electrochem 15, 829–836 (2011). https://doi.org/10.1007/s10008-010-1157-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1157-y

Keywords

Navigation