Skip to main content
Log in

Comments on charge density waves

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Charge density waves (CDWs) in transition-metal compounds are shown to be a consequence of the first-order character of the crossover from localized to itinerant d-electron behavior; they are formed as this crossover is approached from either the localized-electron or the itinerant-electron side. Opening of a gap at the Fermi energy by changing the periodicity of the electron potential energy is a description that is only applicable on the approach from the itinerant-electron side. At crossover, single-valent transition-metal compounds with metal–metal d-electron bonding form cation clusters in which d-electrons are confined to molecular orbitals; normally, the individual bonds of a cluster are electron-pair bonds. However, in Zn[V2]O4, orbital ordering of a localized 3d-electron in an xy-orbital lowers the V–V separation in [011] and [101] chains sufficiently that the yz ± izx orbitals approach crossover from the localized-electron side. To resolve the magnetic frustration associated with the antiferromagnetic coupling between the localized spins in neighboring xy orbitals, the yz ± izx electrons become confined to one-electron bonds in a zigzag chain rather than an electron-pair bond within a dimer. The itinerant d-electrons of the zigzag chains are spin-polarized by intra-atomic exchange with xy-orbital spins. At crossover, compounds with cation–anion–cation bonding segregate into cations of an anion complex and cations with localized-electron spins; these segregations commonly result in a disproportionation electron transfer between cations that result in a static “negative-U” CDW in either single-valent or mixed-valent systems, but the perovskite HoNiO3 demonstrates that this electron transfer does not always occur. The insertion of interstitial Oi atoms in the \( {\hbox{L}}{{\hbox{a}}_2}{\hbox{Cu}}{{\hbox{O}}_{{\rm{4}} + \delta }} \) system allows monitoring of the formation of a dynamic phase segregation into mobile multihole polarons in a hole-free matrix that order into a thermodynamically distinct superconductive phase. The polarons may either order into pinned metallic stripes or as two-hole, two-electron bosonic polarons that become pinned to phonons in a superconductive phase that masks a quantum critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schöllhorn R (1982) Solvated intercalation compounds of layered chalcogenide and oxide bronzes. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 315–360

    Google Scholar 

  2. Goodenough JB (2002) Oxide cathodes. In: Schalkwijk WA, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, pp 135–154

    Chapter  Google Scholar 

  3. Goodenough JB (1984) The effective U in oxides and sulfides. In: Acrivos JV, Mott NF, Yoffe A (eds) NATO “Davy” ASI. Physics and chemistry of electrons and ions in condensed matter. Reidel, Dordrecht, pp 1–44

    Google Scholar 

  4. Anderson PW (1959) Phys Rev 115:2–13

    Article  CAS  Google Scholar 

  5. Adler D, Brooks H (1967) Phys Rev 155:826–840

    Article  CAS  Google Scholar 

  6. Goodenough JB (2001) Struct Bond 98:1–16

    Article  CAS  Google Scholar 

  7. Bersuker GI, Goodenough JB (1997) Physica C 274:267–285

    Article  CAS  Google Scholar 

  8. Morin FJ (1959) Phys Rev Lett 3:34–36

    Article  CAS  Google Scholar 

  9. Andersson G (1956) Acta Chem Scand 10:623–630

    Article  CAS  Google Scholar 

  10. Heckingbottom R, Linnett JW (1962) Nature 194:678

    Article  CAS  Google Scholar 

  11. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York, 300

    Google Scholar 

  12. Lomer WM (1962) Proc Phys Soc 80:489–496

    Article  CAS  Google Scholar 

  13. Bongers PF (1957) Thesis. Univ. of Leiden, July 4

  14. Pen HF, van den Brink J, Khomskii DI, Sawatzky GA (1997) Phys Rev Lett 78:1323–1326

    Article  CAS  Google Scholar 

  15. Goodenough JB (1971) Prog Solid State Chem 5:145–399

    Article  CAS  Google Scholar 

  16. Rogers DB, Arnott RJ, Wold A, Goodenough JB (1963) J Phys Chem Solids 24:347–360

    Article  CAS  Google Scholar 

  17. Pardo V, Blanco-Canosa S, Rivadulla F, Khomskii DI, Baldomir D, Wu H, Rivas J (2008) Phys Rev Lett 101:256403-1–256403-4

    Article  Google Scholar 

  18. Baldomir D, Pardo V, Blanco-Canosa S, Rivadulla F, Khomskii DI, Wu H, Piñeiro A, Arias JE, Rivas J (2009) J Mag Mag Mater 321:679–681

    Article  CAS  Google Scholar 

  19. Goodenough JB (1967) Czech J Phys 17:304–336

    Article  CAS  Google Scholar 

  20. Zhou JS, Goodenough JB (2004) Phys Rev B 69:153105-1–153105-4

    Google Scholar 

  21. Alonso JA, Martinez-Lope MJ, Casais MT, Garcia-Munoz JL, Fernandez-Diaz MT, Aranda MAC (2001) Phys Rev B 64:094102-1–094102-10

    Google Scholar 

  22. Zhou JS, Goodenough JB, Dabrowski B (2005) Phys Rev Lett 94:226602-1–226602-4

    Google Scholar 

  23. Wattiaux A, Park JC, Grenier JC, Pouchard M (1990) CR Acad Sci Ser II 310:1047–1054

    CAS  Google Scholar 

  24. Grenier JC, Lagueyte N, Wattiaux A, Doumerc JP, Dordor P, Etourneau J, Pouchard M, Goodenough JB, Zhou JS (1992) Physica C 202:209–218

    Article  CAS  Google Scholar 

  25. Zhou JS, Chen H, Goodenough JB (1994) Phys Rev B 50:4168–4180

    Article  CAS  Google Scholar 

  26. Grant PM, Parkin SSP, Lee VY, Engler EM, Ramirez MC, Vasquez JE, Lim G, Jacowitz RD, Greene RL (1987) Phys Rev Lett 58:2482–2485

    Article  CAS  Google Scholar 

  27. Johnson DC DC, Stokes JP, Goshorn DP, Lewandowski JT (1987) Phys Rev B 36:4007–4010

    Article  Google Scholar 

  28. Chaillaut C, Chenavas J, Cheong SW, Fisk Z, Marezio M, Morosin B, Schirber JE (1990) Physica C 170:87–94

    Article  Google Scholar 

  29. Goodenough JB, Zhou JS, Chan J (1993) Phys Rev B 47:5275–5286

    Article  CAS  Google Scholar 

  30. Takami T, Zhou JS, Cheng JG, Goodenough JB, Matsubayashi K, Uwatoko Y (2009) New J Phys 11:013057–013069

    Article  Google Scholar 

  31. Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S (1995) Nature 375:561–563

    Article  Google Scholar 

  32. Tranquada JM, Ichikawa N, Uchida S (1999) Phys Rev B 59:14712–14722

    Article  CAS  Google Scholar 

  33. Daou R, Doiron-Leyraud N, LeBoeuf D, Li SY, Laliberté F, Cyr-Choinière O, Lo YJ, Balicas L, Yan JQ, Zhou JS, Goodenough JB, Taillefer L (2008) Nat Phys 5:31–34

    Article  Google Scholar 

  34. Goodenough JB (2003) J Phys Condens Matter 15:R257–R326

    Article  CAS  Google Scholar 

  35. Schmidt M, Ratcliff W II, Radaelli PG, Refson K, Harrison NM, Cheong SW (2004) Phys Rev Lett 92:056402-1–056402-4

    Google Scholar 

  36. Goodenough JB (1982) Ann Chim 7:489–504

    CAS  Google Scholar 

  37. Battle PD, Gibb TC, Nixon S (1989) J Solid State Chem 79:75–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Goodenough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenough, J.B. Comments on charge density waves. J Solid State Electrochem 15, 285–291 (2011). https://doi.org/10.1007/s10008-010-1096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1096-7

Keywords

Navigation