Skip to main content
Log in

Thermodynamics, defect structure, and charge transfer in doped lanthanum cobaltites: an overview

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work, based on the experimental and theoretical research performed by the authors during last three decades, presents an overview of phase and defect thermodynamics, electronic transport properties, and the stability of cobaltite-based mixed conductors that are promising for electrode and membrane applications. Attention is centered on (1) the phase equilibria in La–Me–Co–T–O (where Me=Ca, Sr, Ba and T=Mn, Fe, Ni, Cu) systems and crystal structure of the complex oxides formed in these systems, thermodynamic stability and the homogeneity ranges of solid solutions; (2) the defect structure of the oxygen-deficient undoped and acceptor- or/and donor-doped lanthanum cobaltites; and (3) their conductivity and Seebeck coefficient as functions of temperature and oxygen partial pressure. The relationships between the peculiarities of the defect structure and the transport properties of the lanthanum cobaltites with different dopant natures are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Janecek JJ, Wirtz GP (1978) J Am Chem Soc 61:242

    CAS  Google Scholar 

  2. Seppanen M, Kyto M, Taskinen P (1979) Scand J Metal 8:199

    CAS  Google Scholar 

  3. Petrov AN, Cherepanov VA, Novitsky EM, Zhukovsky VM (1984) Russ J Phys Chem 58:1618

    Google Scholar 

  4. Petrov AN, Cherepanov VA, Zuyev AYu, Zhukovsky VM (1988) J Solid State Chem 75:1

    Article  Google Scholar 

  5. Kitayama K (1997) J Solid State Chem 131:18

    Article  CAS  Google Scholar 

  6. Borlera ML, Abbattista F (1983) J Less-Common Met 92:55

    Article  CAS  Google Scholar 

  7. Nakamura T, Petzow G, Gauckel LJ (1979) Mater Res Bull 14:649

    Article  CAS  Google Scholar 

  8. Kamegashira N, Miyazaki Y, Hiyoshi Y (1984) Mater Lett 2:194

    Article  CAS  Google Scholar 

  9. Kamegashira N, Miyazaki Y (1984) Mater Chem Phys 11:187

    Article  CAS  Google Scholar 

  10. Tretyakov YuD, Kaul AR, Portnoy VK (1977) High Temp Sci 9:61

    CAS  Google Scholar 

  11. Cherepanov VA, Barkhatova LYu, Petrov AN (1994) J Phys Chem Solids 55:229

    Article  CAS  Google Scholar 

  12. Cherepanov VA, Barkhatova LYu, Petrov AN, Voronin VI (1995) In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Solid oxide fuel cells IV, PV 95-1. The Electrochemical Society, Pennington, pp 434

    Google Scholar 

  13. Cherepanov VA, Gavrilova LYa, Barkhatova LYu, Voronin VI, Trifonova MV, Bukhner OA (1998) Ionics 4:309

    Article  CAS  Google Scholar 

  14. Cherepanov VA, Gavrilova LYa, Filonova EA, Trifonova MV, Voronin VI (1999) Mater Res Bull 34:983

    Article  CAS  Google Scholar 

  15. Gavrilova LYa, Cherepanov VA, Surova TV, Baimistruk VA, Voronin VI (2002) Russ J Phys Chem 76:150

    Google Scholar 

  16. Gavrilova LYa, Cherepanov VA (1999) In: Singhal SC, Dokiya M (eds) Solid oxide fuel cells VI, PV 99-17. The Electrochemical Society Proceedings Series. The Electrochemical Society, Pennington, pp 404

    Google Scholar 

  17. Cherepanov VA, Gavrilova LYa, Petrov AN, Zuev AYu (2002) Z Anorg Allg Chem 628:2140

    Article  Google Scholar 

  18. Zinkevich M, Aldinger F (2004) J Alloys Compd 375:147

    Article  CAS  Google Scholar 

  19. Zhang Z, Greenblatt M, Goodenough JB (1994) J Solid State Chem 108:402

    Article  CAS  Google Scholar 

  20. Bannikov DO, Cherepanov VA (2002) Z Anorg Allg Chem 628:2180

    Article  Google Scholar 

  21. Cherepanov VA, Petrov AN, Grimova LYu, Novitsky EM (1983) Russ J Phys Chem 57:859 (in Russian)

    CAS  Google Scholar 

  22. Voronin VI, Berger IF, Cherepanov VA, Gavrilova LYa, Petrov AN, Ancharov AI, Tolochko BP, Nikitenko SG (2001) Nucl Instrum Methods Phys Res A470:202

    Google Scholar 

  23. Petrov AN, Zuev AYu, Cherepanov VA, Kropanev AYu (1987) Izv An SSSR Neorgan Mater 23:949 (in Russian)

    CAS  Google Scholar 

  24. Skakle JMS, West AR (1994) J Am Ceram Soc 77:2199

    Article  CAS  Google Scholar 

  25. Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P (1971) J Solid State Chem 3:582

    Article  CAS  Google Scholar 

  26. Gavrilova LYa, Proskurnina NV, Cherepanov VA, Voronin VI (2001) In: Yokokawa H, Singhal SC (eds) Solid oxide fuel cells VII, PV 2001-16. The Electrochemical Society Proceedings Series. The Electrochemical Society, Pennington, pp 458–465

    Google Scholar 

  27. Gopalakrishnan J, Colsmann G, Reuter B (1976) Z Anorg Allg Chem 424:155

    Article  CAS  Google Scholar 

  28. Sawada H, Hamada N, Terakura K (1995) J Phys Chem Solids 56:1755

    Article  CAS  Google Scholar 

  29. Tikhonova IL, Bakhtin AV, Zuev AYu, Petrov AN (1999) Russ J Phys Chem 73:365

    Google Scholar 

  30. Filonova EA, Cherepanov VA, Voronin VI (1998) Russ J Phys Chem 72:1706

    Google Scholar 

  31. Proskurnina NV, Shabunina OS, Cherepanov VA (2002) Z Anorg Allg Chem 628:2164

    Article  Google Scholar 

  32. Proskurnina NV, Cherepanov VA, Golynets OS, Voronin VI (2004) Inorg Mater 40:955

    Article  Google Scholar 

  33. Cherepanov VA, Filonova EA, Voronin VI, Berger IF, Barkhatova LYu (1999) Mater Res Bull 34:1481

    Article  CAS  Google Scholar 

  34. Cherepanov VA, Filonova EA, Voronin VI, Berger IF (2000) J Solid State Chem 153:205

    Article  CAS  Google Scholar 

  35. Cherepanov VA, Barkhatova LYu, Voronin VI (1997) J Solid State Chem 134:38

    Article  CAS  Google Scholar 

  36. Aksenova TV, Gavrilova LYa, Cherepanov VA (2004) Inorg Mater 40:1336

    Article  CAS  Google Scholar 

  37. Gavrilova LYa, Teslenko YaV, Bannikch LA, Aksenova TV, Cherepanov VA (2002) J Alloys Compd 344:28

    Article  Google Scholar 

  38. Bobina MA, Yakovleva NA, Gavrilova LYa, Cherepanov VA (2004) Russ J Phys Chem 78:1340

    Google Scholar 

  39. Jonker GH (1969) Philips Res Rep 24:1

    CAS  Google Scholar 

  40. Zuev AYu, Petrov AN, Pankov DV (1999) In: Singhal SC, Dokia M (eds) Solid oxide fuel cells VI, PV 99-17. The Electrochemical Society Proceedings Series. The Electrochemical Society, Pennington, pp 424–431

    Google Scholar 

  41. Yasumoto K, Inagaki Y, Shiono M, Dokiya M (2002) Solid State Ion 148:545

    Article  CAS  Google Scholar 

  42. Matsuura T, Tabuchi J, Mizusaki J, Yamauchi S, Fueki K (1988) J Phys Chem Solids 49:1403

    Article  CAS  Google Scholar 

  43. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102

    Article  CAS  Google Scholar 

  44. Petrov AN, Cherepanov VA, Kononchuk OF, Gavrilova LYa (1990) J Solid State Chem 87:69

    Article  CAS  Google Scholar 

  45. Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P (1995) Solid State Ion 80:189

    Article  CAS  Google Scholar 

  46. Lankhorst MHR, Bouwmeester HJM, Verweij H (1996) Phys Rev Lett 77:2989

    Article  CAS  Google Scholar 

  47. Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) J Solid State Chem 133:555

    Article  CAS  Google Scholar 

  48. Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) Solid State Ion 96:21

    Article  CAS  Google Scholar 

  49. Patrakeev MV, Leonidov IA, Mitberg EB, Lakhtin AA, Vasiliev VG, Kozhevnikov VL, Poeppelmeier KR (1999) Ionics 5:444

    Article  CAS  Google Scholar 

  50. Kozhevnikov VL, Leonidov IA, Mitberg EB, Patrakeev MV, Petrov AN, Poeppelmeier KR (2003) J Solid State Chem 172:296

    Article  CAS  Google Scholar 

  51. Petrov AN, Zuev AYu, Pankov DV, Bujanova ES (2004) Russ J Phys Chem 78:220

    CAS  Google Scholar 

  52. Petrov AN, Zuev AYu, Pankov DV (2004) Russ J Phys Chem 78:1616

    CAS  Google Scholar 

  53. Seppanen M, Kyto M, Taskinen P (1980) Scand J Metal 9:3

    CAS  Google Scholar 

  54. Petrov AN, Cherepanov VA, Zuev AYu (1987) Russ J Phys Chem 61:630

    CAS  Google Scholar 

  55. Zuev A, Singheiser L, Hilpert K (2005) Solid State Ion 176:417

    Article  CAS  Google Scholar 

  56. Raccah PM, Goodenough JB (1967) Phys Rev 155:932

    Article  CAS  Google Scholar 

  57. Mizusaki J, Tabuchi J, Matsuura T, Yamauchi S, Fueki K (1989) J Electrochem Soc 2082:136

    Google Scholar 

  58. Sehlin SR, Anderson HU, Sparlin DM (1995) Phys Rev B52:11681

    Google Scholar 

  59. Kharton VV, Naumovich EN, Vecher AA, Nikolaev AV (1995) J Solid State Chem 120:128

    Article  CAS  Google Scholar 

  60. Mitberg EB, Patrakeev MV, Lakhtin AA, Leonidov IA, Kozhevnicov VL, Poeppelmeier KR (2000) Solid State Ion 130:325

    Article  CAS  Google Scholar 

  61. Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN, Lapchuk NM (1999) Solid State Ion 120:65

    Article  CAS  Google Scholar 

  62. Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA, Marques FMB (2000) Solid State Ion 138:135

    Article  CAS  Google Scholar 

  63. Petrov AN, Zuev AYu, Vylkov AI (2005) Russ J Phys Chem 79:220

    Google Scholar 

  64. Tietz F, Schmidt A, Zahid M (2004) J Solid State Chem 177:745

    Article  CAS  Google Scholar 

  65. Petric A, Huang P, Tietz F (2000) Solid State Ion 135:719

    Article  CAS  Google Scholar 

  66. Thornton G, Owen IW, Diakun GP (1991) J Phys Condens Mater 3:417

    Article  CAS  Google Scholar 

  67. Senaris-Rodriguez MA, Goodenough JB (1995) J Solid State Chem 116:224

    Article  CAS  Google Scholar 

  68. Heikes RR (1961) Thermoelecticity science and engineering. Interscience, New York

    Google Scholar 

  69. Chen CH, Kruidhoff H, Bouwmeester HJM (1997) J Appl Electrochem 27:71

    Article  CAS  Google Scholar 

  70. Petrov AN, Voronin VI, Norby T, Kofstad P (1999) J Solid State Chem 143:52

    Article  CAS  Google Scholar 

  71. Doumerc J-P (1994) J Solid State Chem 110:419

    Article  Google Scholar 

  72. Raveau B (2004) In: Orlovskaya N, Browning N (eds) Mixed ionic electronic perovskites for advanced energy systems. Kluwer, Boston, pp 25–36

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research [grant numbers 04-03-32118, 05-03-32477, 04-03-96136 (Ural) and 04-03-32142], the Civilian Research & Development Foundation, and the Ministry of Education and Science of Russian Federation (project EK-005-XI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cherepanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, A.N., Cherepanov, V.A. & Zuev, A.Y. Thermodynamics, defect structure, and charge transfer in doped lanthanum cobaltites: an overview. J Solid State Electrochem 10, 517–537 (2006). https://doi.org/10.1007/s10008-006-0124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0124-0

Keywords

Navigation