Skip to main content
Log in

Polyaniline films containing palladium microparticles for electrocatalytic purposes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The deposition of palladium as microparticles on electrogenerated polyaniline (PAni) films accomplished by metal electroless precipitation or by electrodeposition has been used to prepare stable polymer-modified electrode systems. Its general morphology, metal particles size and distribution were obtained by AFM analysis. The PAni/Pd microparticles electrodes have been evaluated for their catalytic activity towards hydrogenation reactions upon organic compounds reduction using 4-nitro-benzaldehyde. Studies on rotating ring-disk electrodes have shown that relatively low Pd loadings are required to obtain effective electrocatalytic activity, provided a good metal particles dispersion of about 100 nm diameter is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe T, Kaneko M (2003) Prog Polymer Sci 28:1441

    Article  CAS  Google Scholar 

  2. Premkumar J, Ramaraj R (1997) J Sol State Electrochem 1:172

    Article  CAS  Google Scholar 

  3. Saffarian HM, Srinivasan R, Chu D, Gilman S (2001) J Electrochem Soc 148:A559

    Article  CAS  Google Scholar 

  4. Huang JC, Zhang C, Zhang W, Zhou X (1997) J Electroanal Chem 433:33

    Article  CAS  Google Scholar 

  5. Holdcroft S, Funt BL (1988) J Electroanal Chem 240:89

    Article  CAS  Google Scholar 

  6. Giacomini MT, Ticianelli EA, McBreen J, Balasubramanian (2001) J Electrochem Soc 148:A323

    Article  CAS  Google Scholar 

  7. Qi Z, Pickup PG (1998) Chem Commun 2299

  8. Lefebvre MC, Qi Z, Pickup PG (1999) J Electrochem Soc 146:2054

    Article  CAS  Google Scholar 

  9. Cioffi N, Torsi L, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2000) J Electroanal Chem 488:42

    Article  CAS  Google Scholar 

  10. Grzeszczuk M, Poks P (2000) Electrochim Acta 45:4171

    Article  CAS  Google Scholar 

  11. Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrochim Acta 46:579

    Article  CAS  Google Scholar 

  12. Frydrychewicz A, Czerwinski A, Jackowska K (2001) Synth Met 121:1401

    Article  CAS  Google Scholar 

  13. Blaser H, Indolese A, Schnyder A, Steiner H, Studer M (2001) J Mol Catalysis A: Chemical 173:3

    Article  CAS  Google Scholar 

  14. Baldauf M, Kolb DM (1993) Electrochim Acta 38:2145

    Article  CAS  Google Scholar 

  15. Li HS, Josowicz M, Baer DR, Engelhard MH, Janata J (1995) J Electrochem Soc 142:798

    Article  CAS  Google Scholar 

  16. Shin EW, Cho SI, Kang JH, Kim WJ, Park JD, Moon SH (2000) Korean J Chem Eng 17(4):468

    Article  CAS  Google Scholar 

  17. Maksimov YM, Kolyadko EA, Shishlova AV, Podlovchenko BI (2001) Russian J Electrochem 37:777

    Article  CAS  Google Scholar 

  18. Leone A, Marino W, Sharifker BR (1992) J Electrochem Soc 139:438

    Article  CAS  Google Scholar 

  19. Tsakova V, Winkels S, Schultze JW (2001) J Electroanal Chem 500:574

    Article  CAS  Google Scholar 

  20. Ivanov S, Tsakova V (2004) Electrochim Acta 49:913

    Article  CAS  Google Scholar 

  21. Hasik M, Drelinkiewicz A, Choczynski M, Quillard S, Pron A (1997) Synth Met 84:93

    Article  CAS  Google Scholar 

  22. Drelinkiewicz A, Hasik M, Kloc M (2000) Catalysis Lett 64:41

    Article  CAS  Google Scholar 

  23. Abrantes LM, Correia JP (1995) Mat Sci Forum 191:235

    Article  CAS  Google Scholar 

  24. Mourato A, Viana AS, Correia JP, Siegenthaler H, Abrantes LM (2004) Electrochim Acta 49:2249

    Article  CAS  Google Scholar 

  25. Lai EKW, Beattie PD, Orfino FP, Simon E, Holdcroft S (1999) Electrochim Acta 44:2559

    Article  CAS  Google Scholar 

  26. Drelinkiewicz A, Hasik M (1999) J Catalysis 186:123

    Article  CAS  Google Scholar 

  27. Abrantes LM, Correia JP (1998) Portugaliae Electrochim Acta 16:85

    CAS  Google Scholar 

  28. Huang SW, Neoh KG, Shih CW, Lim DS, Kang ET, Han HS, Tan KL (1998) Synth Met 96:117

    Article  CAS  Google Scholar 

  29. Sobczak JW, Kosinski A, Jablanski A, Palczewska W (2000) Top Catalysis 11/12:307

    Article  Google Scholar 

  30. Croissant MJ, Napporn T, Léger JM, Lamy C (1998) Electrochim Acta 43:2447

    Article  CAS  Google Scholar 

  31. Mikhaylova AA, Molodkina EB, Khazova OA, Bagotzky VS (2001) J Electroanal Chem 509:119

    Article  CAS  Google Scholar 

  32. Esteban PO, Leger JM, Lamy C (1989) J Appl Electrochem 19:462

    Article  Google Scholar 

  33. Yeager E (1981) J Electrochem Soc 128:160

    Article  Google Scholar 

  34. Kost KM, Bartak DE, Kazae B, Kuwana T (1988) Anal Chem 60:2379

    Article  CAS  Google Scholar 

  35. Mascaro LH, Gonçalves D, Bulhões LOS (2004) Thin Sol Films 461:243

    Article  CAS  Google Scholar 

  36. Quiroz MA, Córdova F, Lamy-Pitara E, Barbier J (2000) Electrochim Acta 45:4291

    Article  CAS  Google Scholar 

  37. Kondo T, Sumi T, Uosaki K (2002) J Electroanal Chem 538:59

    Article  Google Scholar 

  38. El-Deab MS, Ohsaka T (2003) J Electroanal Chem 553:107

    Article  CAS  Google Scholar 

  39. Chen SM, Lin JL (2004) J Electroanal Chem 571:223

    Article  CAS  Google Scholar 

  40. Lima FHB, Ticianelli EA (2004) Electrochim Acta 49:4091

    Article  CAS  Google Scholar 

  41. Sopchak D, Miller B, Avyigal Y, Kalish R (2002) J Electroanal Chem 538:39

    Article  Google Scholar 

  42. Alipazaga MV, Bonifacio RL, Kosminsky L, Bertotti M, Coichev N (2003) J Braz Chem Soc 14:713

    Article  CAS  Google Scholar 

  43. Crow DR (1994) Principles and applications of electrochemistry. Chapman & Hall, London

    Google Scholar 

  44. Oliveira AM, Brett CMA (1996) Electroquímica, Princípios, Métodos e Aplicações. Almedina, Coimbra, Portugal

    Google Scholar 

  45. Cyr A, Huot P, Belot G, Lessard J (1990) Electrochim Acta 35:147

    Article  CAS  Google Scholar 

  46. Martel A, Cheong AK, Lessard J, Brossard L (1994) Can J Chem 72:2253

    Article  Google Scholar 

  47. Cyr A, Huot P, Marcoux FJ, Belot G, Lavirron E, Lessard J (1989) Electrochim Acta 34:439

    Article  CAS  Google Scholar 

  48. Mohapatra SK, Sonavane SU, Jayaram RV, Selvam P (2002) Tetrahedron Lett 43:8527

    Article  CAS  Google Scholar 

  49. Zhao F, Ikushima Y, Arai M (2004) J Catalysis 224:479

    Article  CAS  Google Scholar 

  50. Constantinescu E, Hillebrand M, Volanschi E (1988) J Electroanal Chem 256:95

    Article  CAS  Google Scholar 

  51. Jannakoudakis AD (1991) Synth Met 39:303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fundação para a Ciência e a Tecnologia, through Ph.D. scholarship PRAXIS XXI / BD 21424 / 99. We thank Ulrich Kindler (Department of Chemistry and Biochemistry, University of Bern) for manufacturing the RRDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Abrantes.

Additional information

Dedicated to Professor M. A. Vorotyntsev on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourato, A., Wong, S.M., Siegenthaler, H. et al. Polyaniline films containing palladium microparticles for electrocatalytic purposes. J Solid State Electrochem 10, 140–147 (2006). https://doi.org/10.1007/s10008-005-0053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0053-3

Keywords

Navigation