Skip to main content
Log in

Nickel foam-based composite electrodes for electrooxidation of methanol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel foam and five nickel foam-based composite electrodes were prepared for being used as anode materials for the electrooxidation of methanol in KOH solution containing 0.1 and 1.0 M of methanol. The layered electrodes composed of nickel foam, platinum nanoparticles, polyaniline (PANI) and/or porous carbon (C) prepared in various assemblies. As shown by SEM analysis, depending on the preparation conditions, the electrodes of different morphologies were obtained. Using the cyclic voltammetry method, the oxidation of methanol on nickel foam electrode was observed in the potential range 0.4 V ↔ 0.7 V, where the Ni(OH)2/NiOOH transformation occurred. The presence of Pt particles in electrode gave rise to the increase in electrocatalytic activity in this potential range. For electrodes containing dispersed platinum catalyst (Ni/Pt, Ni/PANI/Pt and Ni/C/Pt), the oxidation of methanol was noted also in the potential range −0.5 V ↔ 0.1 V. The electrocatalytic activities of the examined electrodes toward methanol oxidation at low potentials were in order Ni/Pt > Ni/C/Pt > Ni/PANI/Pt, whereas at high potentials in order Ni/PANI/Pt > Ni/Pt> Ni/C/Pt > Ni. Among the examined electrodes, the most resistant to cyclic poisoning appeared to be the Ni/C/Pt electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR (2004) Electrochim Acta 49:3873

    Article  CAS  Google Scholar 

  2. Parson R, VaderNoot T (1988) J Electroanal Chem 257:9

    Article  Google Scholar 

  3. Grug BN, Marcovic NM, Ross PN (1998) Electrochim Acta 43:3631

    Article  Google Scholar 

  4. Grug BN, Marcovic NM, Ross PN (1998) Phys Chem B 101:3910

    Google Scholar 

  5. Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:73

    Google Scholar 

  6. Love JG, Brooksby PA, McQuillan AJ (1999) J Electroanal Chem 464:93

    Article  CAS  Google Scholar 

  7. Herrero E, Fernandez-Vega A, Feliu JM, Adlaz A (1993) J Electroanal Chem350:73

    Article  CAS  Google Scholar 

  8. Beden B, Kadirgan F, Lany C, Leger JM (1982) J Electroanal Chem 142:171

    Article  CAS  Google Scholar 

  9. Caram JA, Gutierrez C (1992) J Electroanal Chem 323:213

    Article  CAS  Google Scholar 

  10. Perez JM, Munoz E, Morallon E, Cases F, Vazquez JL, Aldaz A (1994) J Electroanal Chem 368:285

    Article  CAS  Google Scholar 

  11. Prabhuram J, Manoharan R (1998) J Power Sources 74:54

    Article  CAS  Google Scholar 

  12. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) Int J Hydrogen Energy 27:507

    Article  CAS  Google Scholar 

  13. Yu EH, Scott K, Reeve RW (2003) J Electroanal Chem 547:17

    Article  CAS  Google Scholar 

  14. Markovic NM, Schmidt TJ, Grgur BN, Gasteiger HA, Behm RJ, Ross PN (1999) J Phys Chem B 103:8568

    Article  CAS  Google Scholar 

  15. Nishimura K, Machida K, Enyo M (1988) J Electroanal Chem 251:117

    Article  CAS  Google Scholar 

  16. Tripkovic AV, Marinkovic N, Popovic KDj, Adzic RR (1995) Russ J Electrochem 31:993

    CAS  Google Scholar 

  17. Manoharan R, Prabhuram J (2001) J Power Sources 96:60

    Article  Google Scholar 

  18. Acress GJK (2001) J Power Sources 100:60

    Article  Google Scholar 

  19. Borkowska Z, Tymosiak-Zielińska A, Shul G (2004) Electrochim Acta 49:120

    Google Scholar 

  20. Spendelow JS, Lu GQ, Kenis PJA, Wieckowski A (2004) J Electroanal Chem 568:215

    Article  CAS  Google Scholar 

  21. Tripković AV, Popović KDj, Lović JD, Jovanović VM, Kowal A (2004) J Electroanal Chem 572:119

    Article  CAS  Google Scholar 

  22. Burstein GT, Barnett CJ, Kucernak AR, Williams KR (1997) Catal Today 38:425

    Article  CAS  Google Scholar 

  23. Manoharan R, Prabhuram J (2001) J Power Sources 96:220

    Article  CAS  Google Scholar 

  24. Katsuaki S, Kohei U, Hideaki K, Yoshinobu N (1988) J Electroanal Chem 256:481

    Article  Google Scholar 

  25. Watanabe M, Saegusa S, Stonehart P (1989) J Electroanal Chem 271:213

    Article  CAS  Google Scholar 

  26. Katsuaki S, Ryuhei I, Hideaki K (1990) J Electroanal Chem 284:523

    Article  Google Scholar 

  27. Yano J, Ogura K, Kitani A, Sasaki K (1992) Synth Met 52:21

    Article  CAS  Google Scholar 

  28. Gloaguen F, Leger JM, Lamy C (1997) J Appl Electrochem 27:1052

    Article  CAS  Google Scholar 

  29. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) J Power Sources 135:42

    Article  CAS  Google Scholar 

  30. Kuk ST, Wieckowski A (2005) J Power Sources 141:1

    Article  CAS  Google Scholar 

  31. Greszczuk M (1994) Electrochim Acta 39:1809

    Article  Google Scholar 

  32. Prasad KR, Munichandraiah N (2001) Synth Met 123:459

    Article  Google Scholar 

  33. Prasad KR, Munichandraiah N (2002) Synth Met 130:17

    Article  Google Scholar 

  34. Lin S-M, Wen T-C (1995) J Appl Electrochem 25:73

    Article  CAS  Google Scholar 

  35. El-Shafei A.A (1999) J Electroanal Chem 471:89

    Article  CAS  Google Scholar 

  36. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) J Power Sources 134:160

    Article  CAS  Google Scholar 

  37. Skowroński JM, Ważny A (2002) Mol Phys Rep 35:49

    Google Scholar 

  38. Malinauskas A(1999) Synth Met 107:75

    Article  CAS  Google Scholar 

  39. Schultze JW, Karabulut H (2005) Electrochim Acta 50:1739

    Article  CAS  Google Scholar 

  40. Aoki K, Tano S (2005) Electrochim Acta 50:1491

    Article  CAS  Google Scholar 

  41. Niu L, Li Q, Wei F, Chen X, Wang H (2003) Synth Met 139:271

    Article  CAS  Google Scholar 

  42. Park K-W, Choi J-H, Kwon B-K, Lee S-A, Sung Y-E, Ha H-Y, Hong S-A, Kim H, Wieckowski A (2003) J Phys Chem 107:5467

    Google Scholar 

  43. Biswas PC, Nodasaka Y, Enyo M (1996) J Appl Electrochem 26:30

    Article  CAS  Google Scholar 

  44. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Bonnemann H (1998) J Electrochem Soc 145:925

    Article  CAS  Google Scholar 

  45. Wang X, Hsing I-M (2002) Electrochim Acta 47:2981

    CAS  Google Scholar 

  46. King WD, Corn JD, Murphy OJ, Boxall DL, Kenik EA, Kwiatkowski KC, Stock SR, Luckehart CM (2003) J Phys Chem B 107:5467

    Article  CAS  Google Scholar 

  47. Spinace EV, Neto AO, Linardi M (2004) J Power Sources 129:121

    Article  CAS  Google Scholar 

  48. Bhattacharya A, Hazra A,Chatterjee S, Sen P, Laha S, Basumallick I (2004) J Power Sources 136:208

    Article  CAS  Google Scholar 

  49. He Z, Chen J, Liu D, Tang H, Deng W, Kuang Y (2004) Mater Chem Phys 85:396

    Article  CAS  Google Scholar 

  50. Rodriguez-Nieto FJ, Morante-Catacora TY, Cabrera CR (2004) J Electroanal Chem 571:15

    Article  CAS  Google Scholar 

  51. Zhang X, Tsang KY, Chan KY (2004) J Electroanal Chem 573:1

    Article  CAS  Google Scholar 

  52. Bode H, Dehmelt K, Witte J (1961) Electrochim Acta 11:1079

    Article  Google Scholar 

  53. Fleichmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39

    Article  Google Scholar 

  54. Fleichmann M, Korinek K, Pletcher D (1972) J Chem Soc Perkin Trans II:1396

    Google Scholar 

  55. Hahn F, Beden B, Croissant MJ, Lamy C (1986) Electrochim Acta 31:335

    Article  CAS  Google Scholar 

  56. Czerwiński A, Dmochowska M, Grdeń M, Kopczyk M, Wójcik G, Młynarek G, Kołata J, Skowroński JM (1999) J Power Sources 77:28

    Article  Google Scholar 

  57. Enea O (1990) Electrochim Acta 35:375

    Article  CAS  Google Scholar 

  58. Vukovic M (1994) J Appl Electrochem 24:878

    Article  CAS  Google Scholar 

  59. Luo J, Maye MM, Kariuki NN, Wang L, Njoki P, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005) Catalysis Today 99:291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Skowroński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowroński, J.M., Ważny, A. Nickel foam-based composite electrodes for electrooxidation of methanol. J Solid State Electrochem 9, 890–899 (2005). https://doi.org/10.1007/s10008-005-0046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0046-2

Keywords

Navigation