Skip to main content
Log in

Novel composite anode materials for lithium ion batteries with low sensitivity towards humidity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphitic anode materials for lithium ion batteries processed under high humidity conditions show severe performance losses. The sensitivity of these materials towards humidity can be significantly reduced by adsorbing metal ions like silver or copper ions, with subsequent heat treatment of these composites. Results of X-ray photoelectron spectroscopy, high-resolution electron microscopy, thermogravimetry, and differential thermal analysis indicate that the deposited metals exist in metallic and carbide, M x C (M=Cu or Ag), forms. They remove or cover (i.e. deactivate) active hydrophilic sites at the surface of the graphite. These composites absorb less water during processing. The electrochemical performance, including reversible capacity, coulombic efficiency in the first cycle, and cycling behavior, is markedly improved. This approach provides a potentially powerful method to manufacture lithium ion batteries under less demanding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Besenhard JO (1999) Handbook of battery materials. Wiley-VCH, Weinheim

  2. Wu YP, Wan C, Jiang C, Fang SB (2002) Principles, introduction and advances of lithium secondary batteries. Tsinghua University Press, Beijing

  3. McCreery RL (1991) Carbon electrodes: structural effects on electron transfer kinetics. In: Bard AJ (ed) Electroanalytical chemistry, vol.17. Dekker, New York, p 221

  4. Peled E, Menachem C, Bar-Tow D, Melman A (1996) J Electrochem Soc 143:L4

    CAS  Google Scholar 

  5. Wu YP, Wan C, Jiang C, Tsuchida E (2000) Electrochem Commun 2:272

    Article  CAS  Google Scholar 

  6. Takamura T, Awano H, Ura T, Sumiya K (1997) J Power Sources 68:114

    Article  CAS  Google Scholar 

  7. Ein-Eli Y, Koch VR (1997) J Electrochem Soc 144:2968

    CAS  Google Scholar 

  8. Wu YP, Jiang C, Wan C, Tsuchida E (2001) J Mater Chem 11:1233

    Article  CAS  Google Scholar 

  9. Wu YP, Jiang C, Wan C, Holze R (2003) J Appl Electrochem (in press)

  10. Menachem C, Wang Y, Floners J, Peled E, Greenbaum SG (1998) J Power Sources 76:180

    Article  CAS  Google Scholar 

  11. Nakajima T, Yanagida K (1996) Tanso 174:195

    CAS  Google Scholar 

  12. Gaberscek M, Bele M, Drofenik J, Dominko R, Pejovnik S (2000) Electrochem Solid-State Lett 3:171

    Google Scholar 

  13. Saito M, Sumiya K, Sekine K, Takamura T (1999) Electrochemistry 67:957

    CAS  Google Scholar 

  14. Wang H, Yoshio M (2001) J Power Sources 101:35

    Article  CAS  Google Scholar 

  15. Wu YP, Jiang C, Wan C, Tsuchida E (2000) Electrochem Commun 2:626

    Article  CAS  Google Scholar 

  16. Barbooti M (1984) Sol Energy Mater 10:35

    CAS  Google Scholar 

  17. Vinkevisius J, Mozginsiene I, Jasulatiene V (1998) J Electroanal Chem 442:73

    Article  Google Scholar 

  18. Wu Z, Pittman CU, Gardner SD (1995) Carbon 33:597

    Article  CAS  Google Scholar 

  19. Zielke U, Huttinger KJ, Hoffman WP (1996) Carbon 34:983

    Article  CAS  Google Scholar 

  20. Goethel PJ, Yang RT (1989) J Catal 119:201

    CAS  Google Scholar 

  21. Oh SG, Baker R (1991) J Catal 128:137

    CAS  Google Scholar 

  22. Pyun SI (1999) Fresenius J Anal Chem 363:38

    CAS  Google Scholar 

  23. Aurbach D, Ein-Eli Y, Chusid O, Carmeli Y, Babai M, Yamin H (1994) J Electrochem Soc 141:603

    CAS  Google Scholar 

  24. Debart A, Dupont L, Poizot P, Leriche JB, Tarascon J (2001) J Electrochem Soc 148:A1266

    Article  CAS  Google Scholar 

  25. Whitehead A, Ellioft J, Owen J (1999) J Power Sources 81–82:33

    Google Scholar 

  26. Huang H, Kelder EM, Schoonman J (2001) J Power Sources 97–98:114

  27. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285

    Article  CAS  Google Scholar 

  28. Suzuki J, Yoshida M, Nakahara C, Sekine K, Kikuchi M, Takamura T (2001) Electrochem Solid-State Lett 4:A1

  29. Momose H, Honbo H, Takeuchi S, Nishimura K, Horiba T, Muranaka Y, et al. (1997) J Power Sources 68:208

    Article  CAS  Google Scholar 

  30. Nishimura K, Honbo H, Takeuchi S, Horiba T, Oda M, Koseki M, et al. (1997) J Power Sources 68:436

    Article  CAS  Google Scholar 

  31. Yu P, Ritter JA, White RE, Popov BN (2000) J Electrochem Soc 147:1280

    Article  CAS  Google Scholar 

  32. Kim S, Kadoma Y, Ikuta H, Uchimoto Y, Wakihara M (2001) Electrochem Solid-State Lett 4:A109

  33. Dolle M, Grugeon S, Beaudoin B, Dupont L, Tarascon JM (2001) J Power Sources 97–98:104

  34. Chung GC, Jun SH, Lee KY, Kim MH (1999) J Electrochem Soc 146:1664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the China Postdoctor Foundation and the Alexander von Humboldt Foundation is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Holze.

Additional information

Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holze, R., Wu, Y.P. Novel composite anode materials for lithium ion batteries with low sensitivity towards humidity. J Solid State Electrochem 8, 66–72 (2003). https://doi.org/10.1007/s10008-003-0398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0398-4

Keywords

Navigation