Skip to main content
Log in

Metal/insulator/metal junctions for electrochemical surface science

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract.

We describe the preparation and characterization of Al-AlOx-Ag tunnel junctions and calculate the energy distribution of the tunneling hot electrons in the range 0–2.5 eV above the Fermi level of silver. Because the mean free path of the hot electrons is of the order of the thickness of the silver film of the junction, which is at the same time the electrode in contact with an electrolyte, new surface effects can be studied. Hot electrons can be injected into the nonhydrated electron band in water. Hot electrons also cause hydrogen evolution at electrode potentials more positive than the ones needed in common electrochemistry. We observed the emission of hot electrons into silver during transients of hydrogen oxidation at silver and during oxidation of overpotential hydrogen on platinum clusters deposited on the silver electrode. The tunnel current at constant tunnel voltage can be changed by faradaic reactions, but surprisingly also by nonfaradaic reactions; this is assigned to a mesoscopic quantum phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.

Similar content being viewed by others

References

  1. Bockris J, Conway B (1980) Comprehensive treatise of electrochemistry, Vol 1, Plenum, New York

  2. Schmickler W (1983) Chem Phys Lett 99:135

    Article  CAS  Google Scholar 

  3. Schmickler W, Henderson D (1986) J Chem Phys 85:1650

    Article  CAS  Google Scholar 

  4. Kornyshev A, Schmickler W, Vorotyntsev M (1982) Phys Rev B 25:5244

    Article  CAS  Google Scholar 

  5. Schmickler W, Henderson D (1986) Prog Surf Sci 22:323

    Article  CAS  Google Scholar 

  6. Schultze J, Stimming U (1975) Z Phys Chem 98:285

    Article  CAS  Google Scholar 

  7. Liebsch A (1998) Electronic excitations at metal surfaces. Plenum, New York

  8. Steinmann W, Fauster T (1995) In: Dai HL, Ho W (eds) Laser spectroscopy, photochemistry on metal surfaces. World Scientific, Singapore, chap 5, p 764

  9. Osgood RM, Wang X (1998) Solid State Physics 51:2

  10. Bauer M, Pawlik S, Aeschlimann M (1997) Phys Rev B 55:10040

    Article  CAS  Google Scholar 

  11. Hertel T et al (1994) Surf Sci 317, L 1147

  12. Gurevich YV, Pleskov YV, Rothenberg ZA (1980) Photoelectrochemistry. Consultants Bureau, Singapore

  13. Sass J (1980) Surf Sci 101:507

  14. Furtak T, Kliewer K (1978) Solid State Comm 26:177

    Article  CAS  Google Scholar 

  15. Furtak T, Kliewer K (1982) Comments Solid State Phys 10:103

    CAS  Google Scholar 

  16. Feulner F, Menzel D (1995) In: Dai HL, Ho W (eds) Laser spectroscopy, photochemistry on metal surfaces. World Scientific, Singapore, chap 16, p 627

  17. Wetzig D et al (1998) Surf Sci 402-404:232

  18. Hasselbrink E (1994) Appl Surf Sci 79-80:34

    Article  CAS  Google Scholar 

  19. Ho W (1995) In: Dai HL, Ho W (eds) Laser spectroscopy, photochemistry on metal surfaces. World Scientific, Singapore, chap 24

  20. Zhou XL, White J M (1995) In: Dai HL, Ho W (eds) Laser spectroscopy, photochemistry on metal surfaces. World Scientific, Singapore, chap 25

  21. Zimmermann F, Ho W (1996) In: Dai HL, Ho W (eds) Surface photochemistry. Wiley, New York, chap 2

  22. Decker F (1993) Electrochim Acta 38:1

  23. Kostecki R, Augustynski J (1993) J Appl Electrochem 23:567

    Article  CAS  Google Scholar 

  24. Goldmann A (1995) Electronic surface, interface states on metallic systems. World Scientific, Singapore, p 35

  25. Richmond GL, Robinson JM, Shannon VL (1988) Prog Surf Sci 28:1

  26. Pettinger B, Bilger C, Lipkowski J, Schmickler W (1998) Interfacial electrochemistry. Dekker, New York, chap 22

  27. Pluchery O, Tadjeddine M, Flament J, Tadjeddine A (2001) Phys Chem Chem Phys 3:3343

    Article  CAS  Google Scholar 

  28. Höfer U (1999) Appl Phys B 68:383

    Article  Google Scholar 

  29. Funtikov A, Sigalaev S, Kazarinov V (1987) J Electroanal Chem 228:197

    Article  CAS  Google Scholar 

  30. Bruckbauer A, Otto A (1998) J Raman Spectrosc 29:665

    Article  CAS  Google Scholar 

  31. Misewich JA, Heinz T, Newns D (1962) Phys Rev Lett 68:3737

    Article  Google Scholar 

  32. Downes A, Guaino P, Dumas P (2001) Appl Phys Lett 80:380

    Article  Google Scholar 

  33. Bartels L et al (1998) Phys Rev Lett 80:2004

  34. Schmickler W (1995) Surf Sci 335:416

  35. Schmickler W (1993) Surf Sci 295:43

  36. Vetter K, Schultze J (1973) Ber Bunsenges Phys Chem 77:945

    Article  CAS  Google Scholar 

  37. Kohl P, Schultze J (1973) Ber Bunsenges Phys Chem 77:953

    Article  CAS  Google Scholar 

  38. Schmickler W, Schultze J (1986) Mod Aspects Electrochem 17:357

    Article  CAS  Google Scholar 

  39. Diesing D, Janssen H, Otto A (1995) Surf Sci 331-333:289

  40. Schatteburg S, Diesing D, Otto A (2000) Appl Phys B 70:573

    Article  CAS  Google Scholar 

  41. Diesing D, Kritzler G, Otto A (2003) In: Thurgate S, Wandelt K (eds) Solid liquid interfaces, macroscopic phenomena, microscopic understanding. Topics in applied physics 85. Springer, Berlin Heidelberg New York, pp 365–421

  42. Fowler RH, Nordheim L (1928) Proc Roy Soc London Ser A 173

  43. Kritzler G (2001) Dissertation. Universität Düsseldorf

  44. Otto A (file available upon demand)

  45. Borisov A, Kazansky A, Gauyacq J (1999) Phys Rev B 59:10935

    Article  CAS  Google Scholar 

  46. Gadzuk JW (1996) Phys Rev Lett 76:4234

    Article  CAS  PubMed  Google Scholar 

  47. Otto A, Diesing D, Janssen H, Hänisch M, Lohrengel MM, Rüße S, Schaak A, Schatteburg S, Körwer D, Kritzler G, Winkes H (1997) In: Roberts MW (eds) 'Interfacial Science', Chapter 7, Blackwell Science (Reprints available), pp 163–193

  48. Gadzuk JW (1997) J Vac Sci Technol A 15:1520

    Article  CAS  Google Scholar 

  49. Diesing D, Hassel AW, Lohrengel MM (1999) Thin Solid Films 342:283

    Article  Google Scholar 

  50. Hänisch M, Otto A (1994) J Phys Condens Matter 6:9659

    Article  Google Scholar 

  51. Guedes M, Slayman K, Jain G (1979) IEEE Journal Quantum Electron 475

  52. Diggle J, Downie T, Goulding C (1969) Chem Rev 69:365

  53. Hassel A, Seo M (1999) Electrochim Acta 44:3769

  54. Hassel A, Diesing D (2002) Electrochem Commun 4: 1

  55. Hassel A, Diesing D (2002) Thin Solid Films 414:296

    Article  CAS  Google Scholar 

  56. Diesing D, Rüsse S, Otto A, Lohrengel MM (1995) Ber Bunsenges Phys Chem 99:1402

    Article  CAS  Google Scholar 

  57. Simmons J (1963) J Appl Phys 34:1793

    Article  Google Scholar 

  58. Simmons J (1964) J Appl Phys 35:2655

    Article  Google Scholar 

  59. Duke C B (1969) Tunneling in solids. Academic, New York, p 53

  60. Politzer B (1966) J Appl Phys 37:279

    Article  Google Scholar 

  61. Ashcroft N, Mermin N (1976) Solid state physics. Holt Saunders, Philadelphia, chap 18, p 364

  62. Hickmott T (2001) J Appl Phys 89:5502

    Article  CAS  Google Scholar 

  63. Staib A, Borgis D (1995) J Chem Phys 103:2642

    Article  CAS  Google Scholar 

  64. Barker G, Gardner A (1973) J Electroanal Chem 47:205

    Article  CAS  Google Scholar 

  65. Benderskii V et al (1974) J Electroanal Chem 56:325

  66. Diesing D, Kritzler G, Otto A (1997) Ber Bunsenges Phys Chem 101:762

    Article  CAS  Google Scholar 

  67. Gerischer H (1973) Ber Bunsenges Phys Chem 77:771

    Article  CAS  Google Scholar 

  68. Curtis M, Walker I (1992) J Chem Soc Faraday Trans 88:2805

    Article  CAS  Google Scholar 

  69. Rowntree R, Parenteau L, Sanches L (1991) J Chem Phys 94:8570

    Article  CAS  Google Scholar 

  70. Sass JK, Gerischer H (1978) In: Feuerbacher B (ed) Photoemission, the electronic properties of surfaces. Wiley, New York, chap 16

  71. Meyer E (1973) Dissertation. Technische Univerität München

  72. Pleskov YV, Rothenberg ZA (1969) J Electronal Chem 20:1

    Article  CAS  Google Scholar 

  73. Körwer D (1992) In: Kiefer W, Cardona M, Schaak G, Schneider FW, Schrötter HW (eds) Proc. XIII International Conference on Raman Spectroscopy. J. Wiley & Sons, p 648

  74. Diesing D (1996) Dissertation. Heinrich-Heine-Universität Düsseldorf

  75. Diesing D, Kritzler G, Otto A (1997) In: Kornyshev A, Tosi M, Ulstrup J (eds) Electron, ion transport in condensed media. World Scientific, Singapore, p 257

  76. Tölle R (2003) Dissertation. Universität Düsseldorf

  77. Diesing D, Winkes H, Otto A (1997) phys stat sol a 159:243

    Article  CAS  Google Scholar 

  78. Toney ME et al (1995) Surf Sci 335:326

  79. Pecina B, Schmickler W (1997) J Electroanal Chem 431:47

    Article  CAS  Google Scholar 

  80. Eckhardt H, Fritsche L, Noffke J (1984) J Phys F 14:97

    Article  Google Scholar 

  81. Noffke J, private communication

  82. Otto A, Reihl B (1990) Phys Rev B 41:9752

    Article  CAS  Google Scholar 

  83. Reetz M, Quaiser S (1995) Angew Chem Int 20:34

    Google Scholar 

  84. Winkels S (2000) Dissertation. Universität Düsseldorf

  85. Pfeiffer B, Thyssen A, Schultze JW (1989) J Electroanal Chem 260:393

    Article  CAS  Google Scholar 

  86. Clavillier J (1980) J Electroanal Chem 107:1190

    Google Scholar 

  87. Stermann M (2001) Diplomarbeit Universität Düsseldorf

  88. Rolandi M, Scott K, Wilson EG, Meldrum FC (2001) J Appl Phys 89:1588

    Article  CAS  Google Scholar 

  89. Graf H, Vancea J, Hoffmann H (2002) Appl Phys Lett 80:1264

    Article  CAS  Google Scholar 

  90. Bardeen J (1961) Phys Rev Lett 6:57

    Article  CAS  Google Scholar 

  91. Josephson B (1967) Advan Phys 163:341

  92. Kaiser L, Bell W (1988) Phys Rev Lett 60:1406

    Article  CAS  PubMed  Google Scholar 

  93. Prietsch M (1995) Phys Rep 253:163

  94. Otto A (2003) Europhys Lett (in press)

  95. Tonscheidt A (1990) Diplomarbeit Universität Düsseldorf

  96. Quinn JJ (1962) Phys Rev 126:1453

  97. Jennings PJ, Jones R, Weinert M (1988) Phys Rev B 37:6113

    Article  CAS  Google Scholar 

  98. Nolting D (2002) Diplomarbeit Universität Düsseldorf

Download references

Acknowledgement.

We thank Walter Schultze and his company for various important scientific and technical support and Jürgen Noffke (TU Clausthal-Zellerfeld) for the data in Figs. 17, 18, 19, 30, 31, 32. The first part of this work was supported by the MWF of North Rhineland-Westphalia under contract no IV A5 103 00891. Our thanks also go to our former collaborators in the field of MIMs: Heike Gebkea Janssen, Matthias Hänisch, Andreas Schaak, Sven Schatteburg, Manuel Lohrengel, Steffen Rüße, Achim Walter Hassel and Diana Vilchez. We thank also Ralf Tölle for the results in Fig. 22 prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Otto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diesing, D., Kritzler, G., Stermann, M. et al. Metal/insulator/metal junctions for electrochemical surface science. J Solid State Electrochem 7, 389–415 (2003). https://doi.org/10.1007/s10008-002-0319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-002-0319-y

Keywords.

Navigation