Skip to main content
Log in

Molecular dynamics simulations of the effect of starch on transport of water and ions through graphene nanopores

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

We use molecular dynamics simulations to unravel the molecular level mechanisms underlying the structure and dynamics of water and ions flowing through nanoporous starch-graphene membranes. Our findings indicate that there is a significant tendency for the formation of short-range order in close proximity to the graphene membrane surface. This leads to a greater concentration of water and ions, suggesting strong interactions between the membrane and the saltwater solution. Furthermore, we found that the starch-graphene membrane was most efficient in sieving out ions when the starch loading is 15 wt.%, and the pore diameter is 14 Å. At these conditions, the starch-graphene membrane showed a high water transport rate and maintained a high level of ion rejection.

Methods

We investigated the effect of loading of starch and the pore diameter on the pressure-induced transport, structure, and dynamics of Na+, Cl, and water using the GROMACS 2021.4 package. We further analyze the density profiles of water and ions in the context of ion-polymer and water-polymer interactions and provide mechanistic insights into the piston-induced flow of saltwater through the starch-graphene membranes using Visual Molecular Dynamics (VMD) software.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Schematic 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on a reasonable request.

References

  1. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:1–15

    Article  Google Scholar 

  2. Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T et al (2020) Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat Mater 19:195–202

    Article  CAS  PubMed  Google Scholar 

  3. Park CH, Lee SY, Hwang DS, Shin DW, Cho DH, Lee KH et al (2016) Nanocrack-regulated self-humidifying membranes. Nature 532:480–483

    Article  PubMed  Google Scholar 

  4. Guo R, Mao J, Yan L-T (2013) Computer simulation of cell entry of graphene nanosheet. Biomaterials 34:4296–4301

    Article  CAS  PubMed  Google Scholar 

  5. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  6. Hou D, Zhang Q, Wang M, Zhang J, Wang P, Ge Y (2019) Molecular dynamics study onwater and ions on the surface of graphene oxide sheet: effects of functional groups. Comput Mater Sci 167:237–247

    Article  CAS  Google Scholar 

  7. Toh W, Ang EYM, Lin R, Liu Z, Ng TY (2022) On the performance of vertically aligned graphene array membranes for desalination. ACS Appl Mater Interfaces 14:27405–27412

    Article  CAS  Google Scholar 

  8. Röding M, Gaska K, Kádár R, Lorén N (2017) Computational screening of diffusive transport in nanoplatelet-filled composites: use of graphene to enhance polymer barrier properties. ACS Appl Nano Mater 1:160–167

    Article  Google Scholar 

  9. Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT et al (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12:546–550

    Article  CAS  PubMed  Google Scholar 

  10. Zhou K-G, Vasu KS, Cherian CT, Neek-Amal M, Zhang JC, Ghorbanfekr-Kalashami H et al (2018) Electrically controlled water permeation through graphene oxide membranes. Nature 559:236–240

    Article  CAS  PubMed  Google Scholar 

  11. Kazemi AS, Abdi Y, Eslami J, Das R (2019) Support based novel single layer nanoporous graphene membrane for efficacious water desalination. Desalination 451:148–159

    Article  CAS  Google Scholar 

  12. Sun S, Shan F, Lyu Q, Li C, Hu S (2019) Theoretical prediction of mechanical strength and desalination performance of one-atom-thick hydrocarbon polymer in pressure-driven separation. Polymers (Basel) 11:1358

    Article  PubMed  Google Scholar 

  13. Kurupath VP, Kannam SK, Hartkamp R, Sathian SP (2021) Highly efficient water desalination through hourglass shaped carbon nanopores. Desalination 505:114978

    Article  CAS  Google Scholar 

  14. Martínez-Sabando J, Coin F, Melillo JH, Goyanes S, Cerveny S (2023) A review of pectin-based material for applications in water treatment. Materials 16:2207

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Yang G, Wang W, Zhu S, Guo L, Zhang Z et al (2019) Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations. J Mol Liq 277:261–268

    Article  CAS  Google Scholar 

  16. Chen T-H, Chen Y-R, Chen L-H, Chang K-S, Lin Y-F, Tung K-L (2017) Exploration of the nanostructures and separation properties of cross-linked mixed matrix membranes using multiscale modeling. J Memb Sci 543:328–334

    Article  CAS  Google Scholar 

  17. Ren W, Qiang T, Chen L (2022) Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll 129:107643

    Article  CAS  Google Scholar 

  18. Ansari SJ, Haider S, Mohapatra S, Varanasi SR, Mogurampelly S (2024) Effects of pectin and temperature on the diffusion of ions and water in saltwater membranes. J Mol Liq 396:124045. https://doi.org/10.1016/j.molliq.2024.124045

  19. Mohapatra S, Teherpuria H, Paul Chowdhury SS, Ansari S, Jaiswal P, Netz R et al (2023) Ion transport mechanisms in pectin-containing EC-LiTFSI electrolytes. https://doi.org/10.48550/arXiv.2305.02387

  20. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen CT, Beskok A (2019) Charged nanoporous graphene membranes for water desalination. Phys Chem Chem Phys 21:9483–9494

    Article  CAS  PubMed  Google Scholar 

  22. Sharma BB, Govind Rajan A (2022) How grain boundaries and interfacial electrostatic interactions modulate water desalination via nanoporous hexagonal boron nitride. J Phys Chem B 126. https://doi.org/10.1021/acs.jpcb.1c09287

  23. Lyu Q, Sun S, Li C, Hu S, Lin LC (2018) Rational design of two-dimensional hydrocarbon polymer as ultrathin-film nanoporous membranes for water desalination. ACS Appl Mater Interfaces 10. https://doi.org/10.1021/acsami.8b04630

  24. Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun. https://doi.org/10.1039/b915190g

    Article  Google Scholar 

  25. Govender S, Przybylowicz§ W, Swart P (2009) Removal of heavy metals from solution using biocompatible polymers. Desalination Water Treat 9. https://doi.org/10.5004/dwt.2009.813

  26. Isaac CPJ, Lakshmipathy R, Sivakumar A (2015) Sunlight and microwave induced preparation of activated carbons and their removal of lead(II) and cadmium(II) from industrial effluent. Desalination Water Treat 53. https://doi.org/10.1080/19443994.2013.870051

  27. Chauhan K, Kumar R, Kumar M, Sharma P, Chauhan GS (2012) Modified pectin-based polymers as green antiscalants for calcium sulfate scale inhibition. Desalination 305. https://doi.org/10.1016/j.desal.2012.07.042

  28. Elma M, Rahma A, Pratiwi AE, Rampun ELA (2020) Coagulation as pretreatment for membrane-based wetland saline water desalination. Asia-Pacific J Chem Eng 15. https://doi.org/10.1002/apj.2461

  29. Bekker H, Berendsen H, Dijkstra E, Achterop S, Van Drunen R, Van der Spoel D David, Sijbers A, Keegstra H, Renardus MKR (1993) Gromacs: a parallel computer for molecular dynamics simulations. 4th international conference on computational physics (PC 92), pp 252–256

  30. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Annual 7:306–17

  31. Hess B, Kutzner C, Van Der Spoel David, Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation - Journal of Chemical Theory and Computation (ACS Publications). 4:3, pp 435-447

  32. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2–3, 2014, Revised Selected Papers 2, pp 3–27

  33. Kaukonen M, Gulans A, Havu P, Kauppinen E (2012) Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations. J Comput Chem 33:652–658

    Article  CAS  PubMed  Google Scholar 

  34. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL et al (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates J Comput Chem 29:622–655

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen CT, Beskok A (2019) Charged nanoporous graphene membranes for water desalination. Phys Chem Chem Phys 21. https://doi.org/10.1039/c9cp01079c

  36. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. https://doi.org/10.1021/j100308a038

    Article  CAS  Google Scholar 

  37. García AE, Sanbonmatsu KY (2002) α-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci 99:2782–7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lorentz HA (1881) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248:127–136

    Article  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  40. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–64

    Article  PubMed  Google Scholar 

  41. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  42. Hückel E, Debye P (1923) The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys Z 24:185–206, pp 1

  43. Doniach S (2004) Biological physics: energy, information. Life Phys Today 57:63–64. https://doi.org/10.1063/1.1839381

    Article  Google Scholar 

  44. Nguyen CT, Beskok A (2018) Saltwater transport through pristine and positively charged graphene membranes. J Chem Phys 149:24704

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Computer Centre of IIT Jodhpur, the HPC centre at the Department of Physics, Freie Universität Berlin (https://doi.org/10.17169/refubium-26754), for providing computing resources that have contributed to the research results reported in this paper.

Funding

SM acknowledges support for the SERB International Research Experience Fellowship SIR/2022/000786 and SERB CRG/2019/000106 provided by the Science and Engineering Research Board, Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Contributions

S. J. Ansari performed the simulations, analyzed the data, and wrote the original manuscript. S. Kundu performed the simulations and analyzed the data. S. Mogurampelly conceived and supervised the project, analyzed the data, wrote the manuscript, and received the funding.

Corresponding author

Correspondence to Santosh Mogurampelly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1441 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S.J., Kundu, S. & Mogurampelly, S. Molecular dynamics simulations of the effect of starch on transport of water and ions through graphene nanopores. J Mol Model 30, 125 (2024). https://doi.org/10.1007/s00894-024-05921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05921-4

Keywords

Navigation