Skip to main content

Advertisement

Log in

Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer’s. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer’s disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils.

Methods

In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The protein structure is available in PDB (2M4J) https://www.rcsb.org/structure/2m4j. Compound 1 is available in the MolPort database bearing MolPort ID MolPort-003-846-107 and compound 2 bearing MolPort-001-779-724, respectively.

References

  1. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hardy J (2006) A Hundred years of Alzheimer’s disease research. Neuron 52(1):3–13

    CAS  PubMed  Google Scholar 

  3. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75(1):333–366

    CAS  PubMed  Google Scholar 

  4. Rajendran L, Honsho M, Zahn TR et al (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    CAS  PubMed  Google Scholar 

  6. Chen G-F, Xu T-H, Yan Y et al (2017) Amyloid beta: structure, biology, and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Poudel P, Park S (2022) Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics 14(4):835

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nie Q, Du X-g, Geng M-y (2011) Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin 32(5):545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Salahuddin P, Khan RH, Furkan M et al (2021) Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nanoparticles, and nano-bodies. Int J Biol Macromol 186:580–590

    CAS  PubMed  Google Scholar 

  10. Murray KA, Hu CJ, Griner SL et al (2022) De novo designed protein inhibitors of amyloid aggregation and seeding. Proc Natl Acad Sci U S A 119(34):e2206240119–e2206240119

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang T et al (2013) Molecular mechanism of the inhibition of EGCG on the Alzheimer A beta(1-42) dimer. J Phys Chem B 117:3993–4002

    CAS  PubMed  Google Scholar 

  12. Le Nguyen Ngoc L et al (2020) Replica-permutation molecular dynamics simulations of an amyloid-β (16–22) peptide and polyphenols. Chem Phys Lett 758:137913

    Google Scholar 

  13. Chen Y et al (2021) A comprehensive insight into the mechanisms of dopamine in disrupting Aβ protofibrils and inhibiting Aβ aggregation. ACS Chem Neurosci 12:4007–4019

    ADS  CAS  PubMed  Google Scholar 

  14. Paul R et al (2022) Inhibition of Aβ16–22 peptide aggregation by small molecules and their permeation through POPC lipid bilayer: insight from molecular dynamics simulation study. J Chem Inf Model 62:5193–5207

    CAS  PubMed  Google Scholar 

  15. Wang Y et al (2023) SEVI inhibits Aβ amyloid aggregation by capping the β-sheet elongation edges. J Chem Inf Model 63:3567–3578

    CAS  PubMed  Google Scholar 

  16. Okumura H et al (2014) Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations. J Am Chem Soc 136:10549–10552

    CAS  PubMed  Google Scholar 

  17. Hoang Viet M et al (2016) Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils. J Chem Phys 145:174113

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Hoang Viet M et al (2015) Picosecond dissociation of amyloid fibrils with infrared laser: a nonequilibrium simulation study. J Chem Phys 143:155101

    ADS  PubMed  Google Scholar 

  19. Okumura H (2021) Role of water molecules and helix structure stabilization in the laser-induced disruption of amyloid fibrils observed by nonequilibrium molecular dynamics simulations. J Phys Chem B 125:4964–4976

    CAS  PubMed  Google Scholar 

  20. Soscia SJ, Kirby JE, Washicosky KJ et al (2010) Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5(3):e9505–e9505

    ADS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka T, Betkekar VV, Ohmori K et al (2021) evaluation of amyloid polypeptide aggregation inhibition and disaggregation activity of A-type procyanidins. Pharmaceuticals (Basel) 14(11):1118

    CAS  PubMed  Google Scholar 

  22. Low KJY, Venkatraman A, Mehta JS et al (2021) Molecular mechanisms of amyloid disaggregation. J Adv Res 36:113–132

    PubMed  PubMed Central  Google Scholar 

  23. Gao X, Carroni M, Nussbaum-Krammer C et al (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 59(5):781–793

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Durairajan SSK, Yuan Q, Xie L et al (2008) Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty. Neurochem Int 52(4-5):741–750

    CAS  PubMed  Google Scholar 

  25. Sanchez Y, Lindquist SL (1990) HSP104 Required for induced thermotolerance. Science. 248(4959):1112–1115

    ADS  CAS  PubMed  Google Scholar 

  26. Wang Q, Yu X, Patal K et al (2013) Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 4(6):1004–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Giorgetti S, Greco C, Tortora P et al (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mol Sci 19(9):2677

    PubMed  PubMed Central  Google Scholar 

  28. Bellotti V, Chiti F (2008) Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases. Curr Opin Struct Biol 18(6):771–779

    CAS  PubMed  Google Scholar 

  29. Roy R, Paul S (2023) Illustrating the effect of small molecules derived from natural resources on amyloid peptides. J Phys Chem B 127(3):600–615

    CAS  PubMed  Google Scholar 

  30. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pardridge WM (2020) Treatment of Alzheimer’s disease and blood-brain barrier drug delivery. Pharmaceuticals (Basel) 13(11):394

    CAS  PubMed  Google Scholar 

  32. Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    CAS  PubMed  Google Scholar 

  33. Lu J, Qiang W, Meredith SC et al (2013) 40-residue beta-amyloid fibril derived from Alzheimer’s disease brain. Worldwide Protein Data Bank

    Google Scholar 

  34. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    ADS  CAS  PubMed  Google Scholar 

  36. (2022) Schrödinger Release 2022-2: Maestro, Schrödinger, LLC, New York, NY

  37. Greenwood JR, Calkins D, Sullivan AP et al (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24(6-7):591–604

    ADS  CAS  PubMed  Google Scholar 

  38. Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691

    ADS  CAS  PubMed  Google Scholar 

  39. Olsson MHM, Søndergaard CR, Rostkowski M et al (2011) PROPKA3: consistent treatment of internal and surface residues in empirical p<i>K</i><sub>a</sub> predictions. J Chem Theory Comput 7(2):525–537

    CAS  PubMed  Google Scholar 

  40. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins: Struct, Funct, Bioinf 73(3):765–783

    CAS  Google Scholar 

  41. Harder E, Damm W, Maple J et al (2015) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296

    PubMed  Google Scholar 

  42. Shivakumar D, Williams J, Wu Y et al (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519

    CAS  PubMed  Google Scholar 

  43. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    CAS  Google Scholar 

  44. (2022) Schrödinger Release 2022-2: LigPrep, Schrödinger, LLC, New York, NY

  45. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    CAS  PubMed  Google Scholar 

  46. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Design 69(2):146–148

    CAS  Google Scholar 

  47. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49(21):6177–6196

    CAS  PubMed  Google Scholar 

  48. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    CAS  PubMed  Google Scholar 

  49. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    CAS  PubMed  Google Scholar 

  50. Uttarkar A, Niranjan V (2022) Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. Mol Simul 48(17):1592–1603

    CAS  Google Scholar 

  51. Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49(W1):W530–W534

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu H, Wang L, Lv M et al (2014) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54(4):1050–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  54. Schapire RE (2013) Explaining AdaBoost. Empirical Inference. Springer, Berlin Heidelberg, pp 37–52

    Google Scholar 

  55. O'Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. Aust J Chem 3:33–33

    CAS  Google Scholar 

  56. Keerthy HK, Vivek HK, Bharathkumar H et al (2015) MOLPRINT 2D-based identification and synthesis of novel chromene based small molecules that target PLA2: validation through chemo- and bioinformatics approaches. RSC Adv 5(109):89797–89808

    ADS  CAS  Google Scholar 

  57. Kim S, Chen J, Cheng T et al (2023) PubChem 2023 update. Nucleic Acids Res 51(D1):D1373–D1380

    PubMed  Google Scholar 

  58. Bowers KJ, Sacerdoti FD, Salmon JK et al (2006) Molecular dynamics---scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06. ACM Press

    Google Scholar 

  59. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    CAS  Google Scholar 

  60. Niranjan V, Uttarkar A, Ramakrishnan A, Muralidharan A, Shashidhara A, Acharya A, Tarani A, Kumar J (2023) De novo design of anti-COVID drugs using machine learning-based equivariant diffusion model targeting the spike protein. Curr Issues Mol Biol 45(5):4261–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Uttarkar A, Kishore AP, Srinivas SM, Rangappa S, Kusanur R, Niranjan V (2023) Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. J Biomol Struct Dyn 41(5):1561–1573. https://doi.org/10.1080/07391102.2021.2022536

    Article  CAS  PubMed  Google Scholar 

  62. Gopal D, Muddebihalkar AG, Skariyachan S, Kaveramma P, Praveen U, Shankar RR, Venkatesan T, Niranjan V (2020) Mitogen activated protein kinase-1 and cell division control protein-42 are putative targets for the binding of novel natural lead molecules: a therapeutic intervention against Candida albicans. J Biomol Struct Dyn 38(15):4584–4599

    CAS  PubMed  Google Scholar 

  63. Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins: Struct, Funct, Bioinf 55(2):351–367

    CAS  Google Scholar 

  64. Jacobson MP, Friesner RA, Xiang Z et al (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320(3):597–608

    CAS  PubMed  Google Scholar 

  65. Li J, Abel R, Zhu K et al (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins 79(10):2794–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Niranjan V, Uttarkar A, Murali K, Niranjan S, Gopal J, Kumar J (2022) Mycobacterium time-series genome analysis identifies AAC2′ as a potential drug target with naloxone showing potential bait drug synergism. Molecules 27(19):6150

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Niranjan V, Jayaprasad S, Uttarkar A et al (2022) Design of novel coumarin derivatives as NUDT5 antagonists that act by restricting ATP synthesis in breast cancer cells. Molecules 28(1):89

    PubMed  PubMed Central  Google Scholar 

  68. Niranjan V, Philip S et al (2023) Design of novel imidazopyrazine derivative against breast cancer via targeted NPY1R antagonist. Anti Cancer Agents Med Chem 23

  69. Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19(3):319–333

    CAS  Google Scholar 

  70. von Freyberg B, Richmond TJ, Braun W (1993) Surface area included in energy refinement of proteins. J Mol Biol 233(2):275–292

    Google Scholar 

  71. Freyberg BV, Braun W (1993) Minimization of empirical energy functions in proteins including hydrophobic surface area effects. J Comput Chem 14(5):510–521

    Google Scholar 

  72. Fleming PJ, Fleming KG (2018) HullRad: fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys J 114(4):856–869

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Conchillo-Solé O, de Groot NS, Avilés FX et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65–65

    PubMed  PubMed Central  Google Scholar 

  74. Ku T et al (2009) Predicting melting temperature directly from protein sequences. Comput Biol Chem 33(6):445–450. https://doi.org/10.1016/j.compbiolchem.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  75. Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I (2014) Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30(18):2681–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27(11):1575–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  78. Murphy MP, LeVine III H (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19(1):311–323. https://doi.org/10.3233/JAD-2010-1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ow S-Y, Dunstan DE (2014) A brief overview of amyloids and Alzheimer’s disease. Protein Sci 23(10):1315–1331. https://doi.org/10.1002/pro.2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Chen H, Li R et al (2023) Amyloid β-based therapy for Alzheimer’s disease: challenges, successes, and future. Sig Transduct Target Ther 8:248. https://doi.org/10.1038/s41392-023-01484-7

    Article  CAS  Google Scholar 

  81. Ghosh U et al (2021) Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc Natl Acad Sci USA 118(4):e2023089118. https://doi.org/10.1073/pnas.2023089118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikeda A, Kim D, Hashidoko Y (2017) Identification of diacetonamine from soybean curd residue as a sporulation-inducing factor toward Bacillus spp. AMB Express 7(1):101–101

    PubMed  PubMed Central  Google Scholar 

  83. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 69361, Diacetonamine. Retrieved November 14, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Diacetonamine.

  84. Li S, Zhu D, Li K et al (2013) Soybean curd residue: composition, utilization, and related limiting factors. ISRN. Ind Eng 2013:1–8

    Google Scholar 

  85. Murai U, Sawada N, Charvat H et al (2022) Soy product intake and risk of incident disabling dementia: the JPHC Disabling Dementia Study. Eur J Nutr 61(8):4045–4057

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hsu R-L, Lee K-T, Wang J-H et al (2008) Amyloid-degrading ability of nattokinase from <i>Bacillus subtilis</i> natto. J Agric Food Chem 57((2)):503–508

    Google Scholar 

  87. Waraczewski R, Muszyński S, Sołowiej BG (2022) An analysis of the plant- and animal-based hydrocolloids as byproducts of the food industry. Molecules 27(24):8686

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wong KH, Li GQ, Li KM et al (2011) Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol 134(3):584–607

    PubMed  Google Scholar 

  89. Zhu M, Du J, Chen S et al (2014) L-cystathionine inhibits mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci 15(12):23059–23073

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wada K, Kamisaki Y, Nakamoto K et al (1996) Effect of cystathionine as a scavenger of superoxide generated from human leukocytes or derived from xanthine oxidase in vitro. Eur J Pharmacol 296(3):335–340

    CAS  PubMed  Google Scholar 

  91. Kitamura Y, Kamisaki Y, Itoh T (1989) Effect of cystathionine on acetaminophen-induced liver injury. A physiological prodrug of cysteine. Jpn J Pharmacol 49:198

    Google Scholar 

  92. Amir R (2010) Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids 39(4):917–931

    CAS  PubMed  Google Scholar 

  93. Elliot O, Holtzman NA, McKusick VA (1974) Cystathionine in the brains of tree shrews and other mammals. Primates 15(2-3):227–234

    CAS  Google Scholar 

  94. Qi R et al (2018) “Replica exchange molecular dynamics: a practical application protocol with solutions to common problems and a peptide aggregation and self-assembly example.” Methods in molecular biology, vol 1777, (Clifton, N.J.), pp 101–119. https://doi.org/10.1007/978-1-4939-7811-3_5

  95. Soto C, Kindy MS, Baumann M et al (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 226(3):672–680

    CAS  PubMed  Google Scholar 

  96. Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Schrodinger Inc. for providing software support for method development, conduction, and analysis. We thank the Department of Computer Science and Engineering, R V College of Engineering for providing access to NVIDIA A100 for performing MD simulation. We thank the staff at the School of Design at R V University for access to Mac systems for developing publishable quality images for the manuscript. We also thank the staff and team at the Department of Biotechnology, R V College of Engineering for the support.

Author information

Authors and Affiliations

Authors

Contributions

VN was involved in ideation and conceptualization. AU was involved in methodology, analysis and finalizing manuscript VR and DH were involved in analysis, drafting the draft manuscript. All the authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Vidya Niranjan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary file 1. The cross-correlation matrix for compound 1 at various temperature profile at 300K, 302K, 308K, 318K, 322K and 350K respectively. (PDF 23736 kb)

ESM 2

Supplementary file 2. The cross-correlation matrix for compound 2 at various temperature profile at 300K, 302K, 308K, 318K, 322K and 350K respectively. (PDF 14681 kb)

ESM 3

Supplementary file 3. PCA plot for 3 modes for compound 1 at various temperature profile at 300K, 302K, 308K, 318K, 322K and 350K respectively. (PDF 473 kb)

ESM 4

Supplementary file 4. PCA plot for 3 modes for compound 2 various temperature profile at 300K, 302K, 308K, 318K, 322K and 350K respectively. (PDF 431 kb)

ESM 5

Supplementary Video 1. A video of movement of fibrils on interaction with compound 1 in graphics interchangeable format (GIF). (GIF 10775 kb)

ESM 6

Supplementary Video 2. A video of movement of fibrils on interaction with compound 2 in graphics interchangeable format (GIF). (GIF 6449 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uttarkar, A., Rao, V., Bhat, D. et al. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 30, 61 (2024). https://doi.org/10.1007/s00894-024-05860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05860-0

Keywords

Navigation