Skip to main content
Log in

Structural and theoretical study of π-stacking interactions in new complexes based on CuCl2 and 3-sulfonamide-substituted imidazo[2,1-b]thiazoles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

At present, sulfonamides and their metal complexes have received a new impetus for development. Of particular interest is the study of molecular and crystal structures, which takes into account weak non-valent interactions. Despite the low energy of such interactions, in many cases, they act collectively, and the sum of their actions can play a significant role. As a result, the spectrum of medical and biological activity of new metal complexes is expanded. In this regard, the synthesis and study of the molecular and crystal structure of sulfonamides and their metal complexes is of undoubted relevance. In this work, we studied non-valent intra- and intermolecular interactions in ligands of sulfonamide-substituted imidazo[2,1-b]thiazoles and their previously unknown complexes with CuCl2. The performed analysis of the data obtained by X-ray diffraction analysis made it possible to establish the intramolecular π-stacking interaction in imidazothiazole ligands, which is retained in their complexes with CuCl2. Within the framework of QTAIM topological analysis of electron density and DORI analysis, stereoelectronic and topological structures were studied. In the complexes, tetral, chalcogen, and pnycogen new interligand non-valent interactions were established. The energies of all established types of non-valent interactions have been calculated, and their comparative evaluation has been made.

Methods

X-ray data of new arylsulfonylamino-substituted derivatives of imidazo[2,1-b]thiazoles and their metal complexes with CuCl2 have been studied. To determine the theoretical prerequisites for the occurrence of π-stacking in the molecules under study, the QTAIM method was used in the framework of the DFT/B3LYP/6–311 + G(d) calculation using the GAUSSIAN 09 program. In addition, the DORI electron density region overlap indicator and the Multiwfn program were used to analyze non-valent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mironova EV, Lodochnikova OA, Krivolapov DB, Veremeichik Ya. V, Plemenkov VV, Litvinov IA (2014) J Struct Chem 55:539–547

    Article  CAS  Google Scholar 

  2. Abbate F, Supuran CT, Scozzafava A, Orioli P, Stubbs MT, Klebe G (2002) J Med Chem 45:3583–3587

    Article  CAS  PubMed  Google Scholar 

  3. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Med Chem 10:925–953

    CAS  Google Scholar 

  4. Supuran CT, Scozzafava A (2000) Exp Opin Ther Pat 10:575–600

    Article  CAS  Google Scholar 

  5. Huang D, Caflisch A (2012) J Chem Theory Comput 8(5):1786–1794

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Li A-R, Wang Y et al (2011) ACS Med Chem Lett 2(5):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller MW, Basra S, Kulp DW et al (2009) PNAS 106(3):719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M (2020) Angew Chem Int Ed Engl 59:8952–8956

    Article  CAS  PubMed  Google Scholar 

  9. Ovung A, Bhattacharyya J (2021) Biophys Rev 13:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, am Ende CW, Ball ND (2018) Org Lett 20:3943–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vigorito A, Calabrese C, Maris A, Loru D, Peña I, Sanz EM, Melandri S (2022) Moleculs 27(9):2820

    Article  CAS  Google Scholar 

  12. Andreani A, Burnelli S, Granaiola M, Guardigli M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Rizzoli M, Varoli L, Roda A (2008) Eur J Med Chem 43(3):657–661

    Article  CAS  PubMed  Google Scholar 

  13. Borhani DW, Calderwood DJ, Frank KE, Davis HM, Josephsohn NS, Skinner BS (2008) US Patent WO 063287

  14. Emmitte KA, Wilson BJ, Baum EW, Emerson HK, Kuntz KW, Nailor KE, Salovich JM, Smith SC, Cheung M, Gerding RM, Stevens KL, Uehling DE, Mook RA Jr, Moorthy GS, Dickerson SH, Hassell AM, Leesnitzer MA, Shewchuk LM, Groy A, Rowand JL, Anderson K, Atkins CL, Yang J, Sabbatini P, Kumar R (2009) Bioorg Med Chem Lett 19(3):1004–1007

  15. Fidanze SD, Erickson SA, Wang GT, Mantei R, Clark RF, Sorensen BK, Bamaung NY, Kovar P, Johnson EF, Swinger KK, Stewart KD, Zhang Q, Tucker LA, Pappano WN, Wilsbacher JL, Wang J, Sheppard GS, Bell RL, Davidsen SK, Hubbard RD (2010) Bioorg Med Chem Lett 20(8):2452–2455

    Article  CAS  PubMed  Google Scholar 

  16. Andreani A, Rambaldi M, Mascellani G, Rugarli P (1987) Eur J Med Chem 22(1):19–22

    Article  CAS  Google Scholar 

  17. Andreani A, Rambaldi M, Andreani F, Bossa R, Galatulas I (1988) Eur J Med Chem 23(4):385–389

    Article  CAS  Google Scholar 

  18. Andreani A, Rambaldi M, Locatelli A, Bossa R, Fraccari A, Galatulas I (1993) Pharm. Acta Helv 68(1):21–24

    Article  CAS  Google Scholar 

  19. Andreani A, Bonazzi D, Rambaldi M (1982) Arch Pharm 315(5):451–456

    Article  CAS  Google Scholar 

  20. Andreani A, Rambaldi M, Locatelli A, Bossa R, Fraccari A, Galatulas I (1992) J Med Chem 35(24):4634–4637

    Article  CAS  PubMed  Google Scholar 

  21. Poorrajab F, Ardestani SK, Emami S, Behrouzi-Fardmoghaddam M, Shafiee A, Foroumadi A (2009) Eur J Med Chem 44(4):1758–1762

    Article  CAS  PubMed  Google Scholar 

  22. Khalaj A, Nakhjiri M, Negahbani AS, Samadizadeh M, Firoozpour L, Rajabalian S, Samadi N, Faramarzi MA, Adipour N, Shafiee A, Foroumadi A (2011) Eur J Med Chem 46(1):65–70

    Article  CAS  PubMed  Google Scholar 

  23. Gupta GD, Jain KK, Gupta RP, Pujari HK (1983) Indian J Chem Sect B: Org Chem Incl Med Chem 22:268

  24. Amarouch H, Loiseau PR, Bacha C, Caujolle R, Payard M, Loiseau PM, Bories C, Gayral P (1987) Eur J Med Chem 22(5):463–466

    Article  CAS  Google Scholar 

  25. Muhammad P, Aqsa R, Anfal M, Zohaib S, Shah H, Ayoub R, Umar Y, Ahmad A (2020) J Mol Struct 1202:127284

    Article  Google Scholar 

  26. Sekhar EV, Karki SS, Rangaswamy J, Bhat M, Sujeet K (2021) Beni-Suef Univ J Basic Appl Sci 10(1):28

  27. Al-khodir (2015) Orient J Chem 31(3):1277–1285

  28. Huentupil Y, Pena L, Novoa N, Berrino E, Arancibia R, Supuran CT (2019) J Enzym Inhibit Med Chem 34(1):451–458

    Article  CAS  Google Scholar 

  29. Serkan D, Nilgun OK, Daran J-C, Labande A, Polib R (2013) Eur J Inorg Chem 2013:3224–3232

    Article  Google Scholar 

  30. Szadkowska A, Zukowska K, Pazio AE, Wozniak K, Kadyrov R, Grela K (2011) Organometallics 30:1130–1138

    Article  CAS  Google Scholar 

  31. Jin W, Li X, Wan B (2011) J Org Chem 76:484–491

    Article  CAS  PubMed  Google Scholar 

  32. Javier C, Gloria A, Sacramento F, Julio L, Jose A (2000) Ramırez; Joaquın, Borras. Inorg Chim Acta 304:170–177

    Google Scholar 

  33. Yan M, Li T, Yang Z (2011) Inorg Chem Commun 14:463–465

    Article  CAS  Google Scholar 

  34. Burlov AS, Vlasenko VG, Koshchienko Yu.V, Nikolaevskii SA, Kiskin MA, Minin VV, Ugolkova EA, Efimov NN, Bogomyakov AS, Kolodina AA, Zubavichus Ya.V, Levchenkov SI, Garnovskii DA (2018) Polyhedron 154:123–131

  35. Sajjad, Hussain, Sumrra; Abrar, Ul, Hassan; Muhammad, Nadeem, Zafar; Syed, Salman, Shafqat; Ghulam, Mustafa; Muhammad, Naveed, Zafar; Muhammad, Zubair; Muhammad, Imran (2022) J Mol Struct 1250:131710

  36. Serykh VYu, Kaliev AR, Ushakov IA, Borodina TN, Smirnov VI, Rozentsveig IB (2018) Arkivoc Part III:62–75

    Google Scholar 

  37. Borodina TN, Smirnov VI, Serykh VY, Rozentsveig IB (2022) J Mol Struct 1248:131423

    Article  CAS  Google Scholar 

  38. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann HJ (2009) Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  39. Sheldrick GM (2008) Acta Crystallogr Sect A Found Adv A64:112–122

    Article  Google Scholar 

  40. Bruker (2001) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA., (n.d.)

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc. Wallingford CT

  42. Bader RFW, Matta CF (2013) Found Chem 15(3):253–276

    Article  CAS  Google Scholar 

  43. Keith TA (2011) AIMALL. TK Gristmill Software. Overland Park KS. USA

  44. Lu T, Chen FWJ (2012) of Computat. Chem 33(5):580–592

    Google Scholar 

  45. Parkin A, Collins A, Gilmore CJ, Wilson CC (2008) Acta Crystallogr B 64:66–71

    Article  CAS  PubMed  Google Scholar 

  46. Rozentsveig IB, Serykh VY, Chernysheva GN, Chernyshev KA, Kondrashov EV, Tretyakov EV, Romanenko GV (2013) Eur J Org Chem 368–375

  47. Zahid HC (2008) J Enzyme Inhibition Med Chem 23(1):120–130

    Article  Google Scholar 

  48. Goszczycki P, Stadnicka K, Brela MZ, Grolik J, Ostrowska K (2017) J Mol Struct 1146:337–346

    Article  CAS  Google Scholar 

  49. De Silva P, Corminboeuf C (2014) J Chem Theor Computat 10(9):3745–3756

    Article  Google Scholar 

  50. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285(3–4):170–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out using the material and technical base of the Baikal Analytical Center for Collective Use of the SB RAS. This work was carried out within the framework of the research project of Russian Academy of Sciences no. 121021000264-1.

Author information

Authors and Affiliations

Authors

Contributions

Borodina T.N.: data curation, writing — original draft. Smirnov V.I.: conceptualization, methodology, writing — reviewing and editing. Serykh V.Yu.: resources. Rozentsveig I.B.: writing — reviewing and editing.

Corresponding author

Correspondence to T. N. Borodina.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodina, T.N., Smirnov, V.I., Serykh, V.Y. et al. Structural and theoretical study of π-stacking interactions in new complexes based on CuCl2 and 3-sulfonamide-substituted imidazo[2,1-b]thiazoles. J Mol Model 29, 136 (2023). https://doi.org/10.1007/s00894-023-05549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05549-w

Keywords

Navigation