Skip to main content
Log in

Inhibitory mechanism of n-MTAB AuNPs for α-synuclein aggregation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Objective

The aggregation of alpha-synuclein (α-syn) is closely related to the pathogenesis and dysfunction of Parkinson’s disease.

Methods

To investigate the potential of nanoparticlemediated therapy, the interactive mechanism between α-syn and n-myristyltrimethylammonium bromide (MTAB) Gold nanoparticles (AuNPs) with different diameters was explored by molecular dynamics simulations.

Results

The results indicated that there was a directional interaction between α-syn and n-MTAB AuNPs, in which the driving force for the binding of the C-terminus in α-syn came from electrostatic interactions and the nonamyloid β component (NAC) domain exhibited weak hydrophobic interactions as well as electrostatic interaction, thereby preventing α-syn aggregation. Energy statistics and analysis showed that for 5-MTAB AuNPs, acidic amino acids such as Glu and Asp played a very important role.

Conclusions

This study not only demonstrated a theoretical foundation for the behavior of biomolecules directionally adsorbed on the surface of biofunctional nanoparticles but also indicated that 5-MTAB AuNPs may be a potential inhibitor against α-syn protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This is not applicable.

Code availability

This is not applicable.

References

  1. Chandra S, Chen XC, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278(17):15313–15318

    Article  CAS  PubMed  Google Scholar 

  2. Giasson BI, Murray IVJ, Trojanowski JQ, Lee VMY (2001) A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386

    Article  CAS  PubMed  Google Scholar 

  3. Du HN, Tang L, Luo XY, Li HT, Hu J, Zhou JW, Hu HY (2003) A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein. Biochemistry 42(29):8870–8878

    Article  CAS  PubMed  Google Scholar 

  4. Sung YH, Rospigliosi C, Eliezer D (2006) NMR mapping of copper binding sites in alpha-synuclein. Biochimica Et Biophysica Acta-Proteins Proteomics 1764(1):5–12

    Article  CAS  Google Scholar 

  5. Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37

    CAS  PubMed  Google Scholar 

  6. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102(5):1430–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L-Y, Wang C-W, Yuan Z, Chang H-T (2014) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229

    Article  PubMed  Google Scholar 

  8. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev-Nanomedicine Nanobiotechnology 7(3):428–445

    Article  CAS  Google Scholar 

  10. Subramanian K, Ponnuchamy K (2018) Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines. Appl Nanosci 8(5):1133–1138

    Article  CAS  Google Scholar 

  11. Meyers JD, Cheng Y, Broome A-M, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP (2015) Peptide-Targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 32(4):448–457

    Article  CAS  PubMed  Google Scholar 

  12. Liu RR, Song LT, Meng YJ, Zhu M, Zhai HL (2019) Study on biocompatibility of AuNPs and Theoretical design of a multi-CDR-functional nanobody. J Phys Chem B 123(35):7570–7577

    Article  CAS  PubMed  Google Scholar 

  13. Chen K, Xu Y, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun L, Guo X (2011) Electrostatic selectivity in protein-nanoparticle interactions. Biomacromol 12(7):2552–2561

    Article  CAS  Google Scholar 

  14. Lin W, Insley T, Tuttle MD, Zhu L, Berthold DA, Kral P, Rienstra CM, Murphy CJ (2015) Control of protein orientation on gold nanoparticles. J Phys Chem C 119(36):21035–21043

    Article  CAS  Google Scholar 

  15. Wu M, Vartanian AM, Chong G, Pandiakumar AK, Hamers RJ, Hernandez R, Murphy CJ (2019) Solution NMR analysis of ligand environment in quaternary ammonium-terminated self -assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J Am Chem Soc 141(10):4316–4327

    Article  CAS  PubMed  Google Scholar 

  16. Heinz H, Vaia RA, Farmer BL, Naik RR (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J Phys Chem C 112(44):17281–17290

    Article  CAS  Google Scholar 

  17. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2004) Structure and dynamics of micelle-bound human-synuclein. J Biol Chem 280(10):9595–9603

    Article  PubMed  Google Scholar 

  18. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  19. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  PubMed  Google Scholar 

  20. Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415

    Article  CAS  PubMed  Google Scholar 

  21. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  22. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  23. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  24. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1)

  25. Wong S, Amaro RE, McCammon JA (2009) MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. J Chem Theory Comput 5(2):422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumari R, Kumar R, Lynn A (2014) G_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    Article  CAS  PubMed  Google Scholar 

  27. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  PubMed  Google Scholar 

  28. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. J Am Chem Soc 120(37):9401–9409

    Article  CAS  Google Scholar 

  29. Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system - solvation energies, binding-energies, and conformational-analysis. Proteins-Struct Funct Genet 4(1):7–18

    Article  CAS  PubMed  Google Scholar 

  30. Vigderman L, Manna P, Zubarev ER (2012) Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem, Int Ed Engl 51(3):636–641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical support from GanSu Computing Center and the Supercomputing Center of Cold and Arid Region Environment and Engineering Research Institute of Chinese Academy of Sciences are acknowledged.

Funding

This work was supported by the Natural Science Foundation of Gansu Province (no. 20JR5RA271).

Author information

Authors and Affiliations

Authors

Contributions

Ruirui Liu: methodology, software, investigation, visualization, and writing—original draft. Hong Lin Zhai: conceptualization, supervision, writing—review and Editing, and funding acquisition. Min Zhu, Hai Ping Shao, and Tian Hua Wang: software and validation.

Corresponding author

Correspondence to Hong Lin Zhai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection IX Symposium on Electronic Structure and Molecular Dynamics – IX SeedMol

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R.R., Zhai, H.L., Zhu, M. et al. Inhibitory mechanism of n-MTAB AuNPs for α-synuclein aggregation. J Mol Model 29, 103 (2023). https://doi.org/10.1007/s00894-023-05513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05513-8

Keywords

Navigation