Skip to main content
Log in

Assessment of the performance of six indices in predicating the aromaticity of planar porphyrinoids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context and results

Aromaticity is a fundamental chemical concept that has been widely used in explaining the reactivity, stability, structure, and magnetic properties of many molecules such as conjugated macrocycles, metal heterocyclic compounds, and certain metal clusters. Porphyrinoids (including porphyrin) are of particular interest in terms of diverse aromaticity. Various indices therefore have been used to predict the aromaticity of porphyrin-like macrocycles. However, the reliability of these indices for porphyinoids is always questionable. In order to assess the performance of the indices, we have selected six representative indices to predict the aromaticity of 35 porphyrinoids. The calculated values were then compared with the corresponding results obtained from experiments. Our studies suggest that the theoretical prediction by nucleus independent chemical shifts (NICS), topology of the induced magnetic field (TIMF), anisotropy of the induced current density (AICD), and gauge including magnetically induced current method (GIMIC) are essentially consistent with experimental evidence in all 35 cases and thus are preferred indices.

Computational and theoretical techniques

Based on density functional theory, the performance of the NICS, TIMF, AICD, GIMIC, harmonic oscillator model of aromaticity (HOMA), and multicenter bond order (MCBO) indices were evaluated theoretically. Molecular geometries were optimized at the M06-2X/6-311G** level. NMR calculations using GIAO or CGST method were performed at the M06-2X/6-311G** level. The above calculations were carried out using Gaussian16 suite. The TIMF, GIMIC, HOMA, and MCBO indices were obtained using the Multiwfn program. The AICD outputs were visualized using the POV-Ray software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the conclusions of this study are available within the article and/or its supplementary materials.

References

  1. Lin S, Diercks CS, Zhang YB, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM, Chang CJ (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO(2) reduction in water. Science 349(6253):1208–1213. https://doi.org/10.1126/science.aac8343

    Article  CAS  PubMed  Google Scholar 

  2. Fang X, Chen X, Wang Q, Yang YF, She YB (2020) Understanding the structures and aromaticity of heteroporphyrins with computations. Org Biomol Chem. https://doi.org/10.1039/d0ob00656d

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sondheimer F, Wolovsky R, Amiel Y (2002) Unsaturated macrocyclic compounds. XXIII.1 The synthesis of the fully conjugated macrocyclic polyenes cycloöctadecanonaene ([18]annulene),2 cyclotetracosadodecaene ([24]Annulene), and cyclotriacontapentadecaene ([30]Annulene). J Am Chem Soc 84(2):274–284. https://doi.org/10.1021/ja00861a030

    Article  Google Scholar 

  4. Vogel E (1993) The porphyrins from the ‘annulene chemist’s’ perspective. Pure Appl Chem 65(1):143–152. https://doi.org/10.1351/pac199365010143

    Article  CAS  Google Scholar 

  5. Casademont-Reig I, Woller T, Garcia V, Contreras-Garcia J, Tiznado W, Torrent-Sucarrat M, Matito E, Alonso M (2023) Quest for the most aromatic pathway in charged expanded porphyrins. Chemistry 29(6):e202202264. https://doi.org/10.1002/chem.202202264

    Article  CAS  PubMed  Google Scholar 

  6. Casademont-Reig I, Woller T, Contreras-Garcia J, Alonso M, Torrent-Sucarrat M, Matito E (2018) New electron delocalization tools to describe the aromaticity in porphyrinoids. Phys Chem Phys 20(4):2787–2796. https://doi.org/10.1039/c7cp07581b

    Article  CAS  Google Scholar 

  7. Casademont-Reig I, Ramos-Cordoba E, Torrent-Sucarrat M, Matito E (2020) How do the Huckel and Baird rules fade away in annulenes? Molecules (Basel, Switzerland) 25(3). https://doi.org/10.3390/molecules25030711

  8. Stepien M, Sprutta N, Latos-Grazynski L (2011) Figure eights, Mobius bands, and more: conformation and aromaticity of porphyrinoids. Angew Chem Int Ed Engl 50(19):4288–4340. https://doi.org/10.1002/anie.201003353

    Article  CAS  PubMed  Google Scholar 

  9. Aihara J, Nakagami Y, Sekine R, Makino M (2012) Validity and limitations of the bridged annulene model for porphyrins. J Phys Chem A 116(47):11718–11730. https://doi.org/10.1021/jp310480d

    Article  CAS  PubMed  Google Scholar 

  10. Wu JI, Fernandez I, Schleyer P (2013) Description of aromaticity in porphyrinoids. J Am Chem Soc 135(1):315–321. https://doi.org/10.1021/ja309434t

    Article  CAS  PubMed  Google Scholar 

  11. Pino-Rios R, Cardenas-Jiron G, Tiznado W (2020) Local and macrocyclic (anti)aromaticity of porphyrinoids revealed by the topology of the induced magnetic field. Phys Chem Chem Phys 22(37):21267–21274. https://doi.org/10.1039/d0cp03272g

    Article  CAS  PubMed  Google Scholar 

  12. Fliegl H, Sundholm D (2012) Aromatic pathways of porphins, chlorins, and bacteriochlorins. J Org Chem 77(7):3408–3414. https://doi.org/10.1021/jo300182b

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov AS, Boldyrev AI (2014) Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning. Org Biomol Chem 12(32):6145–6150. https://doi.org/10.1039/c4ob01018c

    Article  CAS  PubMed  Google Scholar 

  14. Pino-Rios R, Cardenas-Jiron G, Ruiz L, Tiznado W (2019) Interpreting aromaticity and antiaromaticity through bifurcation analysis of the induced magnetic field. ChemistryOpen 8(3):321–326. https://doi.org/10.1002/open.201800238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woller T, Contreras-Garcia J, Geerlings P, De Proft F, Alonso M (2016) Understanding the molecular switching properties of octaphyrins. Phys Chem Phys 18(17):11885–11900. https://doi.org/10.1039/c5cp07413d

    Article  CAS  Google Scholar 

  16. Alonso M, Geerlings P, De Proft F (2014) Exploring the structure-aromaticity relationship in Huckel and Mobius N-fused pentaphyrins using DFT. Phys Chem Phys 16(28):14396–14407. https://doi.org/10.1039/c3cp55509g

    Article  CAS  Google Scholar 

  17. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 5. Semichem Inc. Shawnee Mission KS

  18. Wannere CS, Sattelmeyer KW, Schaefer HF 3rd, Schleyer P (2004) Aromaticity: the alternating C-C bond length structures of [14]-, [18]-, and [22]annulene. Angew Chem Int Ed Engl 43(32):4200–4206. https://doi.org/10.1002/anie.200454188

    Article  CAS  PubMed  Google Scholar 

  19. Torrent-Sucarrat M, Navarro S, Cossio FP, Anglada JM, Luis JM (2017) Relevance of the DFT method to study expanded porphyrins with different topologies. J Comput Chem 38(32):2819–2828. https://doi.org/10.1002/jcc.25074

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret Chem Acc 120(1–3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  21. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  22. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  23. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132(11):114110. https://doi.org/10.1063/1.3359469

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer P (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105(10):3842–3888. https://doi.org/10.1021/cr030088+

    Article  CAS  PubMed  Google Scholar 

  25. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  PubMed  Google Scholar 

  26. Wolinski K, Hinton JF, Pulay P (2002) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112(23):8251–8260. https://doi.org/10.1021/ja00179a005

    Article  Google Scholar 

  27. Herges R, Geuenich D (2001) Delocalization of electrons in molecules. J Phys Chem A 105(13):3214–3220. https://doi.org/10.1021/jp0034426

    Article  CAS  Google Scholar 

  28. Geuenich D, Hess K, Kohler F, Herges R (2005) Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem Rev 105(10):3758–3772. https://doi.org/10.1021/cr0300901

    Article  CAS  PubMed  Google Scholar 

  29. Juselius J, Sundholm D, Gauss J (2004) Calculation of current densities using gauge-including atomic orbitals. J Chem Phys 121(9):3952–3963. https://doi.org/10.1063/1.1773136

    Article  CAS  PubMed  Google Scholar 

  30. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13(36):3839–3842. https://doi.org/10.1016/s0040-4039(01)94175-9

    Article  Google Scholar 

  31. Krygowski TM (2002) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems. J Chem Inf Comput Sci 33(1):70–78. https://doi.org/10.1021/ci00011a011

    Article  Google Scholar 

  32. Ponec R, Mayer I (1997) Investigation of some properties of multicenter bond indices. J Phys Chem A 101(9):1738–1741. https://doi.org/10.1021/jp962510e

    Article  CAS  Google Scholar 

  33. Matito E (2016) An electronic aromaticity index for large rings. Phys Chem Chem Phys 18(17):11839–11846. https://doi.org/10.1039/c6cp00636a

    Article  CAS  PubMed  Google Scholar 

  34. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10(34):5207–5217. https://doi.org/10.1039/b804083d

    Article  CAS  PubMed  Google Scholar 

  35. Scholtzova E, Mach P, Langer V (2009) NBO analysis — a useful tool on interpretation of results of crystal structure determination. Acta Crystallogr A 65(a1):S270–S270. https://doi.org/10.1107/S010876730909429x

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. B.01. Wallingford, CT

  37. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  38. Persistence of vision raytracer. POV-Ray 3.7

  39. Shen Z, Uno H, Shimizu Y, Ono N (2004) Controlling conformations and physical properties of meso-tetrakis(phenylethynyl)porphyrins by ring fusion: synthesis, properties and structural characterizations. Org Biomol Chem 2(23):3442–3447. https://doi.org/10.1039/b412688b

    Article  CAS  PubMed  Google Scholar 

  40. Sessler JL, Weghorn SJ, Hiseada Y, Lynch V (1995) Hexaalkyl terpyrrole — a new building-block for the preparation of expanded porphyrins. Chem Eur J 1(1):56–67. https://doi.org/10.1002/chem.19950010110

    Article  CAS  Google Scholar 

  41. Bruce AM, Weyburne ES, Engle JT, Ziegler CJ, Geier GR 3rd (2014) Phlorins bearing different substituents at the sp3-hybridized meso-position. J Org Chem 79(12):5664–5672. https://doi.org/10.1021/jo5008256

    Article  CAS  PubMed  Google Scholar 

  42. Garbicz M, Latos-Grazynski L (2019) A meso-tetraaryl-21-carbaporphyrin: incorporation of a cyclopentadiene unit into a porphyrin architecture. Angew Chem Int Ed Engl 58(18):6089–6093. https://doi.org/10.1002/anie.201901808

    Article  CAS  PubMed  Google Scholar 

  43. Hannah S, Lynch VM, Gerasimchuk N, Magda D, Sessler JL (2001) Synthesis of a metal-free texaphyrin. Org Lett 3(24):3911–3914. https://doi.org/10.1021/ol016757s

    Article  CAS  PubMed  Google Scholar 

  44. Hayashi T, Nakashima Y, Ito K, Ikegami T, Aritome I, Suzuki A, Hisaeda Y (2003) Synthesis, structure, and chemical property of the first fluorine-containing porphycene. Org Lett 5(16):2845–2848. https://doi.org/10.1021/ol0348452

    Article  CAS  PubMed  Google Scholar 

  45. Kupietz K, Bialek MJ, Bialonska A, Szyszko B, Latos-Grazynski L (2018) Aromaticity control via modifications of a macrocyclic frame: 5,6-dimethoxyphenanthriporphyrin and 5,6-dioxophenanthriporphyrin. Org Chem Front 5(21):3068–3076. https://doi.org/10.1039/c8qo00751a

    Article  CAS  Google Scholar 

  46. Lash TD, El-Beck JA, Ferrence GM (2007) Syntheses and reactivity of meso-unsubstituted azuliporphyrins derived from 6-tert-butyl- and 6-phenylazulene. J Org Chem 72(22):8402–8415. https://doi.org/10.1021/jo701523s

    Article  CAS  PubMed  Google Scholar 

  47. Liu N, Morimoto H, Wu F, Lv X, Xiao B, Kuzuhara D, Pan J, Qiu F, Aratani N, Shen Z, Yamada H, Xue S (2022) Synthesis of planar meso-aryl rosarins: a reversible antiaromatic/aromatic interconversion. Org Lett 24(20):3609–3613. https://doi.org/10.1021/acs.orglett.2c01147

    Article  CAS  PubMed  Google Scholar 

  48. Park JK, Yoon ZS, Yoon MC, Kim KS, Mori S, Shin JY, Osuka A, Kim D (2008) Mobius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. J Am Chem Soc 130(6):1824–1825. https://doi.org/10.1021/ja7100483

    Article  CAS  PubMed  Google Scholar 

  49. Sahu K, Mondal S, Patra B, Pain T, Patra SK, Dosche C, Kar S (2020) Regioselective thiocyanation of corroles and the synthesis of gold nanoparticle-corrole assemblies. Nanoscale Adv 2(1):166–170. https://doi.org/10.1039/c9na00671k

    Article  CAS  PubMed  Google Scholar 

  50. Vogel E, Scholz P, Demuth R, Erben C, Broring M, Schmickler H, Lex J, Hohlneicher G, Bremm D, Wu YD (1999) Isoporphycene: the fourth constitutional isomer of porphyrin with an N(4) core-occurrence of E/Z isomerism. Angew Chem Int Ed Engl 38(19):2919–2923. https://doi.org/10.1002/(sici)1521-3773(19991004)38:19%3c2919::aid-anie2919%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  51. Gershoni-Poranne R, Stanger A (2015) Magnetic criteria of aromaticity. Chem Soc Rev 44(18):6597–6615. https://doi.org/10.1039/c5cs00114e

    Article  CAS  PubMed  Google Scholar 

  52. Woller T, Geerlings P, De Proft F, Champagne B, Alonso M (2018) Aromaticity as a guiding concept for spectroscopic features and nonlinear optical properties of porphyrinoids. Molecules (Basel, Switzerland) 23(6). https://doi.org/10.3390/molecules23061333

  53. Woller T, Contreras-García J, Geerlings P, De Proft F, Alonso M (2016) Understanding the molecular switching properties of octaphyrins. Phys Chem Chem Phys 18(17):11885–11900. https://doi.org/10.1039/C5CP07413D

    Article  CAS  PubMed  Google Scholar 

  54. Herges R (2006) Topology in chemistry: designing Mobius molecules. Chem Rev 106(12):4820–4842. https://doi.org/10.1021/cr0505425

    Article  CAS  PubMed  Google Scholar 

  55. Giambiagi M, Segre de Giambiagi M, dos Santos Silva CD, Paiva de Figueiredo A (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2(15):3381–3392. https://doi.org/10.1039/b002009p

    Article  CAS  Google Scholar 

  56. Casademont-Reig I, Ramos-Cordoba E, Torrent-Sucarrat M, Matito E (2021) Aromaticity descriptors based on electron delocalization. In: Fernandez I (ed) Aromaticity. Elsevier, pp 235–259. https://doi.org/10.1016/b978-0-12-822723-7.00007-8

Download references

Acknowledgements

We thank the high-performance computing center, Tongji Medical College of Huazhong University of Science and Technology, for providing computing resources.

Funding

The authors received financial support from the National Natural Science Foundation of China (22171289 and 21672141 to Z. Z. and 21273089 to X. C.)

Author information

Authors and Affiliations

Authors

Contributions

Wenjing Ding performed computation and prepared the manuscript. Zhan Zhang and Xi Chen analyzed the data and revised manuscript. Chang-guo Zhan checked the computational results and made important suggestions.

Corresponding authors

Correspondence to Zhan Zhang or Xi Chen.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Zhang, Z., Chen, X. et al. Assessment of the performance of six indices in predicating the aromaticity of planar porphyrinoids. J Mol Model 29, 83 (2023). https://doi.org/10.1007/s00894-023-05485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05485-9

Keywords

Navigation