Skip to main content

Advertisement

Log in

Designing and property prediction of a novel three-component CL-20/HMX/TNAD energetic cocrystal explosive by MD method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Cocrystallization technology can effectively regulate crystal structure, alter packing mode, and improve physicochemical performances of energetic materials at molecule level. CL-20/HMX cocrystal explosive has high energy density than HMX, but it also exhibits high mechanical sensitivity. To decrease the sensitivity and improve the properties of CL-20/HMX energetic cocrystal, the three-component energetic cocrystal CL-20/HMX/TNAD was designed. The properties of CL-20, CL-20/HMX, and CL-20/HMX/TNAD cocrystal models were predicted. The results show that CL-20/HMX/TNAD cocrystal models have better mechanical properties than CL-20/HMX cocrystal model, implying that the mechanical properties can be effectively improved. The binding energy of CL-20/HMX/TNAD cocrystal models is higher than CL-20/HMX cocrystal model, indicating that the three-component energetic cocrystal is more stable, and the cocrystal model with the ratio 3:4:1 is predicted to be the most stable phase. CL-20/HMX/TNAD cocrystal models have higher value of trigger bond energy than pure CL-20 and CL-20/HMX cocrystal models, meaning that the three-component energetic cocrystal is more insensitive. The crystal density and detonation parameters of CL-20/HMX and CL-20/HMX/TNAD cocrystal models are lower than CL-20, illustrating that the energy density is declined. The CL-20/HMX/TNAD cocrystal has higher energy density than RDX and can be regarded as a potential high energy explosive.

Methods

This paper was performed with molecular dynamics (MD) method with the software of Materials Studio 7.0 under COMPASS force field. The MD simulation was performed under isothermal-isobaric (NPT) ensemble, the temperature and pressure was 295 K and 0.0001 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. Essel JT, Cortopassi AC, Kuo KK, Leh CG, Adair JH (2012) Formation and characterization of nano-sized RDX particles produced using the RESS-AS process. Propellants Explos Pyrotech 37:699–706

    Article  CAS  Google Scholar 

  2. Heijden AE, Creyghton YL, Marino E, Bouma RH, Scholtes GJ, Duvalois W (2008) Energetic materials: crystallization, characterization and insensitive plastic bonded explosives. Propellants Explos Pyrotech 33:25–32

    Article  Google Scholar 

  3. Mattos E, Moreira ED, Diniz MF, Dutra R, Silva G, Iha K (2008) Characterization of polymer-coated RDX and HMX particles. Propellants Explos Pyrotech 33:44–50

    Article  CAS  Google Scholar 

  4. Shi XF, Wang JY, Li XD, An CW (2014) Preparation and characterization of HMX/Estane nanocomposites. Central Eur J Energ Mater 11:433–442

    Google Scholar 

  5. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  Google Scholar 

  6. Bond AD (2007) What is a co-crystal. CrystEngComm 9:833–834

    Article  CAS  Google Scholar 

  7. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  8. Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  9. Tan YW, Yang ZW, Wang HJ, Li HZ, Nie FD, Liu YC, Yu YW (2019) High energy explosive with low sensitivity: a new energetic cocrystal based on CL-20 and 1,4-DNI. Cryst Growth Des 19:4476–4482

    Article  CAS  Google Scholar 

  10. Tan YW, Liu YC, Wang HJ, Li HZ, Nie FD, Yang ZW (2020) Different stoichiometric ratios realized in energetic-energetic cocrystals based on CL-20 and 4,5-MDNI: a smart strategy to tune performance. Cryst Growth Des 20:3826–3833

    Article  CAS  Google Scholar 

  11. Bennion JC, Siddiqi ZR, Matzger AJ (2017) A melt castable energetic cocrystal. Chem Commun 53:6065–6068

    Article  CAS  Google Scholar 

  12. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  13. Liu N, Duan BH, Lu XM, Zhang Q, Xu MH, Mo HC, Wang BZ (2019) Preparation of CL-20/TFAZ cocrystals under aqueous conditions: balancing high performance and low sensitivity. CrystEngComm 21:7271–7279

    Article  CAS  Google Scholar 

  14. Yang ZW, Wang HJ, Zhang JC, Ma Y, Tan YW, Nie FD, Zhang JH, Li HZ (2020) Rapid cocrystallization by exploiting differential solubility: an efficient and scalable process toward easily fabricating energetic cocrystals. Cryst Growth Des 20:2129–2134

    Article  CAS  Google Scholar 

  15. Anderson SR, Dubé P, Krawiec M, Salan JS, Ende DJ, Samuels P (2016) Promising CL-20-based energetic material by cocrystallization. Propellants Explos Pyrotech 41:783–788

    Article  CAS  Google Scholar 

  16. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    Article  CAS  Google Scholar 

  17. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  PubMed  Google Scholar 

  18. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  19. Gao B, Wang DJ, Zhang J, Hu YJ, Shen JP, Wang J, Huang B, Qiao ZQ, Huang H, Nie FD, Yang GC (2014) Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method. J Mater Chem A 2:19969–19974

    Article  CAS  Google Scholar 

  20. Qiu HW, Patel RB, Damavarapu RS, Stepanov V (2015) Nanoscale 2CL-20·HMX high explosive cocrystal synthesized by bead milling. CrystEngComm 17:4080–4083

    Article  CAS  Google Scholar 

  21. Song CK, An CW, Zhang YR, Ye BY, Li HQ, Wang JY (2017) Insensitive CL-20/cyclotetramethylenetetramine (HMX) co-crystals with high performance by ultrasonic in solvent. Int J Energ Mater Chem Propul 16:321–328

    CAS  Google Scholar 

  22. Ghosh M, Sikder AK, Banerjee S, Gonnade RG (2018) Studies on CL-20/HMX (2:1) co-crystal: a new preparation method, structural and thermo kinetic analysis. Cryst Growth Des 18:3781–3793

    Article  CAS  Google Scholar 

  23. Sun SH, Zhang HB, Liu Y, Xu JJ, Huang SL, Wang SM, Sun J (2018) Transitions from separately crystallized CL-20 and HMX to CL-20/HMX cocrystal based on solvent media. Cryst Growth Des 18:77–84

    Article  CAS  Google Scholar 

  24. Willer RL (1983) Synthesis and characterization of high energy compounds. I. trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD). Propellants Explos Pyrotech 8:65–69

    Article  CAS  Google Scholar 

  25. Foltz MF, Coon CL, Garcia F, Nichols AL (1994) The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part I. Propellants Explos Pyrotech 19:19–25

    Article  CAS  Google Scholar 

  26. Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  27. Zhao XQ, Shi NC (1995) Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Google Scholar 

  28. Cady HH, Larson AC, Cromer DT (1963) The crystal of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–623

    Article  CAS  Google Scholar 

  29. Choi CS, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  CAS  Google Scholar 

  30. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  31. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  32. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  33. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  34. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  35. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  36. Ewald PP (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys 64:253–287

    Article  Google Scholar 

  37. Casewit CJ, Colwell KS, Rappé AK (1992) Application of a universal force field to organic molecules. J Am Chem Soc 114:10035–10046

    Article  CAS  Google Scholar 

  38. Rappé AK, Colwell KS, Casewit CJ (1993) Application of a Universal force field to metal complexes. Inorg Chem 32:3438–3450

    Article  Google Scholar 

  39. Mayo SL, Olafson BD, Goddard WA III (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem B 94:8897–8909

    Article  CAS  Google Scholar 

  40. Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768

    Article  CAS  Google Scholar 

  41. Weiner JH (1983) Statistical mechanics of elasticity. John Wiley, New York

    Google Scholar 

  42. Wu JL (1993) Mechanics of elasticity. Tongji University Press, Shanghai

    Google Scholar 

  43. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14:541–563

    Article  CAS  Google Scholar 

  44. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation. Physica B 407:3504–3509

    Article  CAS  Google Scholar 

  45. Xiao JJ, Li SY, Chen J, Ji GF, Zhu W, Zhao F, Wu Q, Xiao HM (2013) Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J Mol Model 19:803–809

    Article  CAS  PubMed  Google Scholar 

  46. Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898–13904

    Article  CAS  Google Scholar 

  47. Xiao JJ, Zhao L, Zhu W, Chen J, Ji GF, Zhao F, Wu Q, Xiao HM (2012) Molecular dynamics study on the relationships of modeling, structural and energy properties with sensitivity for RDX-based PBXs. Sci China Chem 55:2587–2594

    Article  CAS  Google Scholar 

  48. Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Theoretical study on pyrolysis mechanism for ε-hexanitrohexaazaisowurtzitane. Chin J Org Chem 25:536–539

    CAS  Google Scholar 

  49. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim 73:913–922

    Article  CAS  Google Scholar 

  50. Rothstein LR, Petersen R (1979) Predicting high explosive detonation velocities from their composition and structure. Propellants Explos Pyrotech 4:56–60

    Article  CAS  Google Scholar 

  51. Rothstein LR (1981) Predicting high explosive detonation velocities from their composition and structure (II). Propellants Explos Pyrotech 6:91–93

    Article  CAS  Google Scholar 

  52. Kamlet MJ, Ablard JE (1968) Chemistry of detonations. II. Buffered equilibria. J Chem Phys 48:36

    Article  CAS  Google Scholar 

  53. Kamlet MJ, Dickinson D (1968) Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J Chem Phys 48:43–50

    Article  CAS  Google Scholar 

  54. Gottfried JL, Pesce-Rodriguez RA, Farrow D, Dellinger J (2018) Laboratory-scale investigation of the influence of ageing on the performance and sensitivity of an explosive containing ε-CL-20. Propellants Explos Pyrotech 43:616–625

    Article  CAS  Google Scholar 

  55. Muravyev NV, Wozniak DR, Piercey DG (2022) Progress and performance of energetic materials: open dataset, tool, and implications for synthesis. J Mater Chem A 10:11054–11073

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Young Talent Fund of University Association for Science and Technology in Shaanxi, China (grant number 20200604).

Author information

Authors and Affiliations

Authors

Contributions

Gui-Yun Hang: investigation, data analysis, and writing—original draft. Tao Wang: conceptualization and methodology. Chao Lu: modeling and data analysis. Jin-Tao Wang: visualization and software. Wen-Li Yu: investigation and validation. Hui-Ming Shen: modeling and simulation.

Corresponding author

Correspondence to Gui-Yun Hang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, GY., Wang, T., Lu, C. et al. Designing and property prediction of a novel three-component CL-20/HMX/TNAD energetic cocrystal explosive by MD method. J Mol Model 29, 78 (2023). https://doi.org/10.1007/s00894-023-05481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05481-z

Keywords

Navigation