Skip to main content

Advertisement

Log in

Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This experiment was a network pharmacology research based on the theoretical system of traditional Chinese medicine. TCMSP database, PubChem database, RCSB database, and SwissTargetPrediction database were used to study the effective chemical constituents of Ligustri lucidi Fructus and Ecliptae Herba in Erzhiwan, a traditional prescription for nourishing the liver and kidney. Then Genecards database, OMIM database, OMIM Gene Map, and Metascape database were used to study the therapeutic targets of osteoporosis. At last, Cytoscape 3.6.0 software, its built-in Bisogenet and CytoNCA, AutoDockTools-1.5.6 software, PYMOL-2.2.0 software, and Gromacs software, by drawing the relationship diagram between chemical components and disease targets, PPI network of disease, semi-flexible molecular docking technology, evaluation and analysis of enrichment pathway, and molecular dynamics simulation, were used to study the therapeutic mechanism of Erzhiwan on osteoporosis. It is found that the intervention and regulation of Erzhiwan on osteoporosis were mainly realized through multiple targets of active ingredients and multiple pathways, which provided support for the continued development of Erzhiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

N/A. All data generated or analyzed during this study were included in this published article.

Code availability

N/A.

References

  1. Zhang D, Sun L, Mao B et al (2021) Analysis of chemical variations between raw and wine-processed Ligustri Lucidi Fructus by ultra-high-performance liquid chromatography-Q-Exactive Orbitrap/MS combined with multivariate statistical analysis approach[J]. Biomed Chromatogr 35(4):e5025

    Article  CAS  Google Scholar 

  2. Zhao H, Cheng S, Zhang L et al (2019) Ultra-high-pressure-assisted extraction of wedelolactone and isodemethylwedelolactone from Ecliptae Herba and purification by high-speed counter-current chromatography[J]. Biomed Chromatogr 33(6):e4497

    Article  Google Scholar 

  3. Zhai Y, Xu J, Feng L et al (2019) Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine[J]. J Ethnopharmacol 234:57–66

    Article  CAS  Google Scholar 

  4. Yao W, Gu H, Zhu J et al (2014) Integrated plasma and urine metabolomics coupled with HPLC/QTOF-MS and chemometric analysis on potential biomarkers in liver injury and hepatoprotective effects of Er-Zhi-Wan[J]. Anal Bioanal Chem 406(28):7367–7378

    Article  CAS  Google Scholar 

  5. Yan B, Cai X, Yao W et al (2012) Experimental study of active ingredients group in liver protection from erzhi wan on acute hepatic injury induced by CCl4 in mice][J. Zhongguo Zhong Yao Za Zhi 37(9):1303–1306

    Google Scholar 

  6. Wan XM, Zhang M, Zhang P et al (2016) Jiawei Erzhiwan improves menopausal metabolic syndrome by enhancing insulin secretion in pancreatic beta cells[J]. Chin J Nat Med 14(11):823–834

    CAS  Google Scholar 

  7. Sun W, Wang YQ, Yan Q et al (2014) Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/beta-catenin signaling pathway in alveolar bone of ovariectomized rats[J]. J Huazhong Univ Sci Technolog Med Sci 34(1):114–119

    Article  Google Scholar 

  8. Cao X, Li H, Wang M et al (2020) Analysis of five active ingredients of Er-Zhi-Wan, a traditional Chinese medicine water-honeyed pill, using the biopharmaceutics classification system[J]. Biomed Chromatogr 34(2):e4757

    Article  CAS  Google Scholar 

  9. Jia L, Fu L, Wang X, Yang W, Wang H, Zuo T, Zhang C, Hu Y, Gao X, Han L (2018) Systematic profiling of the multicomponents and authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS oriented rapid polarity-switching data-dependent acquisition and selective monitoring of the chemical markers deduced from fingerprint analysis. Molecules 23(12):3143–3156

    Article  Google Scholar 

  10. Chotiyarnwong P, McCloskey EV (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment[J]. Nat Rev Endocrinol 16(8):437–447

    Article  Google Scholar 

  11. Vidal C, Bermeo S, Fatkin D et al (2012) Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis[J]. Bonekey Rep 1:62

    Article  Google Scholar 

  12. Yang DH, Yang MY (2019) The role of macrophage in the pathogenesis of osteoporosis. Int J Mol Sci 20(9):2093–2107

    Article  CAS  Google Scholar 

  13. Tawornchat P, Pattarakankul T, Palaga T et al (2021) Polymerized luteolin nanoparticles: synthesis, structure elucidation, and anti-inflammatory activity[J]. ACS Omega 6(4):2846–2855

    Article  CAS  Google Scholar 

  14. Nabavi SF, Braidy N, Gortzi O et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review[J]. Brain Res Bull 119(Pt A):1–11

    Article  CAS  Google Scholar 

  15. Jang TY, Jung AY, Kyung TS et al (2017) Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis[J]. Cent Eur J Immunol 42(1):24–29

    Article  CAS  Google Scholar 

  16. Adachi SI, Oyama M, Kondo S et al (2021) Comparative effects of quercetin, luteolin, apigenin and their related polyphenols on uric acid production in cultured hepatocytes and suppression of purine bodies-induced hyperuricemia by rutin in mice[J]. Cytotechnology 73(3):343–351

    Article  CAS  Google Scholar 

  17. Jiang ZB, Wang WJ, Xu C et al (2021) Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer[J]. Cancer Lett 515:36–48

    Article  CAS  Google Scholar 

  18. Ashrafizadeh M, Ahmadi Z, Farkhondeh T et al (2020) Autophagy regulation using luteolin: new insight into its anti-tumor activity[J]. Cancer Cell Int 20(1):537

    Article  CAS  Google Scholar 

  19. Zhu JX, Wen L, Zhong WJ et al (2018) Quercetin, kaempferol and isorhamnetin in Elaeagnus pungens thumb. Leaf: Pharmacological Activities and Quantitative Determination Studies[J]. Chem Biodivers 15(8):e1800129

    Article  Google Scholar 

  20. Dabeek WM, Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11(10):2288–2306

    Article  CAS  Google Scholar 

  21. Ferenczyova K, Kalocayova B, Kindernay L, Jelemensky M, Balis P, Berenyiova A, Zemancikova A, Farkasova V, Sykora M, Tothova L, Jasenovec T, Radosinska J, Torok J, Cacanyiova S, Barancik M, Bartekova M (2020) Quercetin exerts age-dependent beneficial effects on blood pressure and vascular function, but is inefficient in preventing myocardial ischemia-reperfusion injury in zucker diabetic fatty rats. Molecules 25(1):187–207

    Article  CAS  Google Scholar 

  22. Chekalina N, Burmak Y, Petrov Y et al (2018) Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease[J]. Indian Heart J 70(5):593–597

    Article  Google Scholar 

  23. Duan J, Guan Y, Mu F et al (2017) Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: involvement of the AMPK/GSK-3beta/Nrf2 signaling pathway[J]. Sci Rep 7:41491

    Article  CAS  Google Scholar 

  24. Zhao HM, Zhang XY, Lu XY et al (2018) Erzhi Pill((R)) protected experimental liver injury against apoptosis via the PI3K/Akt/Raptor/Rictor Pathway[J]. Front Pharmacol 9:283

    Article  Google Scholar 

  25. Jiang J, Yin J, Liu X et al (2018) Erzhi formula extracts reverse renal injury in diabetic nephropathy rats by protecting the renal podocytes[J]. Evid Based Complement Alternat Med 2018:1741924

    Article  Google Scholar 

  26. Desai AV, Robinson GW, Gauvain K, Basu EM, Macy ME, Maese L, Whipple NS, Sabnis AJ, Foster JH, Shusterman S, Yoon J, Weiss BD, Abdelbaki MS, Armstrong AE, Cash T, Pratilas CA, Corradini N, Marshall LV, Farid-Kapadia M, Chohan S, Devlin C, Meneses-Lorente G, Cardenas A, Hutchinson KE, Bergthold G, Caron H, Maneval EC, Gajjar A, Fox E (2022) Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1 or ALK aberrations (STARTRK-NG). Neuro Oncol 24(10):1776–1789

    Article  Google Scholar 

  27. Shu J, Li J, Fu Y et al (2020) Association of ESR1 polymorphism rs2234693 and rs9340799 with postmenopausal osteoporosis in a Chinese population[J]. BMC Musculoskelet Disord 21(1):346

    Article  CAS  Google Scholar 

  28. Xiang D, He J, Jiang T (2018) The correlation between estrogen receptor gene polymorphism and osteoporosis in Han Chinese women[J]. Eur Rev Med Pharmacol Sci 22(23):8084–8090

    CAS  Google Scholar 

  29. Garcia-Rojas MD, Palma-Cordero G, Martinez-Ramirez CO et al (2022) Association of polymorphisms in estrogen receptor genes (ESR1 and ESR2) with osteoporosis and fracture-involvement of comorbidities and epistasis[J]. DNA Cell Biol 41(4):437–446

    Article  CAS  Google Scholar 

  30. Hidalgo-Bravo A, Parra-Torres AY, Casas-Avila L et al (2019) Association of RMND1/CCDC170-ESR1 single nucleotide polymorphisms with hip fracture and osteoporosis in postmenopausal women[J]. Climacteric 22(1):97–104

    Article  CAS  Google Scholar 

  31. Masaki H, Imanishi Y, Naka H et al (2020) Bazedoxifene improves renal function and increases renal phosphate excretion in patients with postmenopausal osteoporosis[J]. J Bone Miner Metab 38(3):405–411

    Article  CAS  Google Scholar 

  32. Wang S, Ma Q, Xie Z et al (2021) An antioxidant sesquiterpene inhibits osteoclastogenesis via blocking IPMK/TRAF6 and counteracts OVX-induced osteoporosis in mice[J]. J Bone Miner Res 36(9):1850–1865

    Article  CAS  Google Scholar 

  33. Recine F, De Vita A, Fausti V et al (2021) Case report: adult NTRK-rearranged spindle cell neoplasm: early tumor shrinkage in a case with bone and visceral metastases treated with targeted therapy[J]. Front Oncol 11:740676

    Article  Google Scholar 

  34. Park S, Zhao Y, Yoon S et al (2011) Repressor of estrogen receptor activity (REA) is essential for mammary gland morphogenesis and functional activities: studies in conditional knockout mice[J]. Endocrinology 152(11):4336–4349

    Article  CAS  Google Scholar 

  35. Zhang Y, Liu H, Zhang C et al (2015) Endochondral ossification pathway genes and postmenopausal osteoporosis: association and specific allele related serum bone sialoprotein levels in Han Chinese[J]. Sci Rep 5:16783

    Article  CAS  Google Scholar 

  36. Yu B, Huo L, Liu Y et al (2018) PGC-1alpha controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ[J]. Cell Stem Cell 23(2):193–209

    Article  CAS  Google Scholar 

  37. Suttamanatwong S (2017) MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis[J]. Connect Tissue Res 58(1):90–102

    Article  CAS  Google Scholar 

  38. Geng Q, Gao H, Yang R et al (2019) Pyrroloquinoline quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence[J]. Int J Biol Sci 15(1):58–68

    Article  CAS  Google Scholar 

  39. La Fleur L, Falk-Sorqvist E, Smeds P et al (2019) Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11[J]. Lung Cancer 130:50–58

    Article  Google Scholar 

  40. Jia F, Sun R, Li J et al (2016) Interactions of Pri-miRNA-34b/c and TP53 polymorphisms on the risk of osteoporosis[J]. Genet Test Mol Biomarkers 20(7):398–401

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Henan Science and Technology Research Project (212400410206) and the Cadre Teacher Training Program of the Sanquan College of Xinxiang Medical University (SQ2021GGJS06).

Author information

Authors and Affiliations

Authors

Contributions

Yanling Li and Weijuan Han were responsible for designing the project and obtaining funds; Ziliang Li, Tongsheng Ye, and Fuqi Hao were responsible for data collation and statistical analysis; Yichi Wang and Wenqian Li carried out the molecular dynamics simulation experiments; Qingfeng Yan and Huawei Shi prepared the first draft. All authors had read and approved the final manuscript.

Corresponding author

Correspondence to Weijuan Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Z., Ye, T. et al. Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation. J Mol Model 29, 21 (2023). https://doi.org/10.1007/s00894-022-05418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05418-y

Keywords

Navigation