Skip to main content

Advertisement

Log in

Structural insights into the inhibition of the nsP2 protease from Chikungunya virus by molecular modeling approaches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chikungunya virus (CHIKV) is the etiological agent of the Chikungunya fever which has spread worldwide. Clinically, this disease may lead to prolonged incapacitating joint pain that can compromise remarkably the patients’ quality of life. However, there are no licensed vaccines or specific drugs to fight this infection yet, making the search for novel therapies an imperative need. In this scenario, the CHIKV nsP2 protease emerged as an attractive therapeutic target once this protein plays a pivotal role in viral replication and pathogenesis. Hence, we investigated the structural basis for the inhibition of this enzyme by using molecular docking and dynamics simulations. Compounds with inhibitory activities against CHIKV nsP2 protease determined experimentally were selected from the literature. Docking studies with a set of stereoisomers showed that trans isomers, but not cis ones, bound close to the catalytic dyad which may explain isomerism requirements to the enzyme’s inhibition. Further, binding mode analyses of other known inhibitors revealed highly conserved contacts between inhibitors and enzyme residues like N1011, C1013, A1046, Y1079, N1082, W1084, L1205, and M1242. Molecular dynamics simulations reinforced the importance of some of these interactions and pointed to nonpolar interactions as the main forces for inhibitors’ binding. Finally, we observed that true inhibitors exhibited lower structural fluctuation, higher ligand efficiency and did not induce significant changes in protein correlated motions. Collectively, our findings might allow discerning true inhibitors from false ones and can guide drug development efforts targeting the nsP2 protease to fight CHIKV infections in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. de Ximenes MdeFFM, de Galvão JMA, Inacio CLS et al (2020) Arbovirus expansion: new species of culicids infected by the Chikungunya virus in an urban park of Brazil. Acta Trop 209:1–5. https://doi.org/10.1016/J.ACTATROPICA.2020.105538

    Article  Google Scholar 

  2. Abdelnabi R, Neyts J, Delang L (2017) Chikungunya virus infections: time to act, time to treat. Curr Opin Virol 24:25–30. https://doi.org/10.1016/j.coviro.2017.03.016

    Article  PubMed  Google Scholar 

  3. Vairo F, Haider N, Kock R et al (2019) Chikungunya: epidemiology, pathogenesis, clinical features, management, and prevention. Infect Dis Clin North Am 33:1003–1025. https://doi.org/10.1016/j.idc.2019.08.006

    Article  PubMed  Google Scholar 

  4. ECDC (2022) Chikungunya worldwide overview. https://www.ecdc.europa.eu/en/chikungunya-monthly.

  5. Kraemer MUG, Reiner RC, Brady OJ et al (2019) Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol 4:854–863. https://doi.org/10.1038/s41564-019-0376-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Natrajan MS, Rojas A, Waggoner JJ (2019) Beyond fever and pain: diagnostic methods for chikungunya virus. J Clin Microbiol 57:1–14. https://doi.org/10.1128/JCM.00350-19

    Article  Google Scholar 

  7. Mehta R, Gerardin P, de Brito CAA et al (2018) The neurological complications of chikungunya virus: a systematic review. Rev Med Virol 28:1–24. https://doi.org/10.1002/rmv.1978

    Article  Google Scholar 

  8. Thiberville S-D, Moyen N, Dupuis-Maguiraga L et al (2013) Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99:345–370. https://doi.org/10.1016/j.antiviral.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thompson R, Del CJM, Constenla D (2020) A review of the economic evidence of Aedes-borne arboviruses and Aedes-borne arboviral disease prevention and control strategies. Expert Rev Vaccines 19:143–162. https://doi.org/10.1080/14760584.2020.1733419

    Article  CAS  PubMed  Google Scholar 

  10. Cardona-Ospina JA, Villamil-Gómez WE, Jimenez-Canizales CE et al (2015) Estimating the burden of disease and the economic cost attributable to chikungunya, Colombia, 2014. Trans R Soc Trop Med Hyg 109:793–802. https://doi.org/10.1093/trstmh/trv094

    Article  PubMed  Google Scholar 

  11. Feldstein LR, Ellis EM, Rowhani-Rahbar A et al (2019) Estimating the cost of illness and burden of disease associated with the 2014–2015 chikungunya outbreak in the U.S. Virgin Islands PLoS Negl Trop Dis 13:1–14. https://doi.org/10.1371/journal.pntd.0007563

    Article  Google Scholar 

  12. van Aalst M, Nelen CM, Goorhuis A et al (2017) Long-term sequelae of chikungunya virus disease: a systematic review. Travel Med Infect Dis 15:8–22. https://doi.org/10.1016/J.TMAID.2017.01.004

    Article  PubMed  Google Scholar 

  13. Subudhi BB, Chattopadhyay S, Mishra P, Kumar A (2018) Current strategies for inhibition of Chikungunya infection. Viruses 10:1–40. https://doi.org/10.3390/v10050235

    Article  CAS  Google Scholar 

  14. Ganesan V, Duan B, Reid S (2017) Chikungunya virus: pathophysiology, mechanism, and modeling. Viruses 9:1–14. https://doi.org/10.3390/v9120368

    Article  CAS  Google Scholar 

  15. Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW (2015) Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 96:2483–2500. https://doi.org/10.1099/jgv.0.000249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shin G, Yost SA, Miller MT et al (2012) Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Proc Natl Acad Sci 109:16534–16539. https://doi.org/10.1073/pnas.1210418109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saisawang C, Saitornuang S, Sillapee P et al (2015) Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine. Sci Rep 5:17125. https://doi.org/10.1038/srep17125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fros JJ, van der Maten E, Vlak JM, Pijlman GP (2013) The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. J Virol 87:10394–10400. https://doi.org/10.1128/JVI.00884-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narwal M, Singh H, Pratap S et al (2018) Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. Int J Biol Macromol 116:451–462. https://doi.org/10.1016/j.ijbiomac.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  20. Rabelo VW, Paixão ICNP, Abreu PA (2020) Targeting Chikungunya virus by computational approaches: from viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 24:63–78. https://doi.org/10.1080/14728222.2020.1712362

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, Compton JR, Leary DH et al (2016) Kinetic, mutational, and structural studies of the Venezuelan equine encephalitis virus nonstructural protein 2 cysteine protease. Biochemistry 55:3007–3019. https://doi.org/10.1021/acs.biochem.5b00992

    Article  CAS  PubMed  Google Scholar 

  22. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E Cohen J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  23. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 Benchmarking Exercise. J Chem Inf Model 53:1893–1904. https://doi.org/10.1021/ci300604z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bassetto M, De Burghgraeve T, Delang L et al (2013) Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res 98:12–18. https://doi.org/10.1016/j.antiviral.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  26. Das PK, Puusepp L, Varghese FS et al (2016) Design and validation of novel chikungunya virus protease inhibitors. Antimicrob Agents Chemother 60:7382–7395. https://doi.org/10.1128/AAC.01421-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667. https://doi.org/10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:162–173. https://doi.org/10.1002/elps.200900140

    Article  Google Scholar 

  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  30. Case DA, Cerutti DS, Cheatham TE, et al (2017) AMBER 2017

  31. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  33. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II Parameterization and validation. J Comput Chem 23:1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  34. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  37. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  38. Ramírez D, Caballero J (2016) Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? Int J Mol Sci 17:1–15. https://doi.org/10.3390/ijms17040525

    Article  CAS  Google Scholar 

  39. Russo AT, Malmstrom RD, White MA, Watowich SJ (2010) Structural basis for substrate specificity of alphavirus nsP2 proteases. J Mol Graph Model 29:46–53. https://doi.org/10.1016/j.jmgm.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rausalu K, Utt A, Quirin T et al (2016) Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease’s active site cysteine residue. Sci Rep 6:37124. https://doi.org/10.1038/srep37124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen PTV, Yu H, Keller PA (2015) Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches. J Mol Graph Model 57:1–8. https://doi.org/10.1016/j.jmgm.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  42. Ramakrishnan C, Kutumbarao NHVV, Suhitha S, Velmurugan D (2017) Structure–function relationship of Chikungunya nsP2 protease: a comparative study with papain. Chem Biol Drug Des 89:772–782. https://doi.org/10.1111/cbdd.12901

    Article  CAS  PubMed  Google Scholar 

  43. Aggarwal M, Sharma R, Kumar P et al (2015) Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay. Sci Rep 5:1–12. https://doi.org/10.1038/srep14753

    Article  CAS  Google Scholar 

  44. Dhindwal S, Kesari P, Singh H et al (2017) Conformer and pharmacophore based identification of peptidomimetic inhibitors of Chikungunya virus NSP2 protease. J Biomol Struct Dyn 35:3522–3539. https://doi.org/10.1080/07391102.2016.1261046

    Article  CAS  PubMed  Google Scholar 

  45. El-labbad EM, Ismail MAHH, Abou Ei Ella DA et al (2015) Discovery of novel peptidomimetics as irreversible CHIKV NsP2 protease inhibitors using quantum mechanical-based ligand descriptors. Chem Biol Drug Des 86:1518–1527. https://doi.org/10.1111/cbdd.12621

    Article  CAS  PubMed  Google Scholar 

  46. Giancotti G, Cancellieri M, Balboni A et al (2018) Rational modifications on a benzylidene-acrylohydrazide antiviral scaffold, synthesis and evaluation of bioactivity against Chikungunya virus. Eur J Med Chem 149:56–68. https://doi.org/10.1016/j.ejmech.2018.02.054

    Article  CAS  PubMed  Google Scholar 

  47. Tardugno R, Giancotti G, De Burghgraeve T et al (2018) Design, synthesis and evaluation against Chikungunya virus of novel small-molecule antiviral agents. Bioorganic Med Chem 26:869–874. https://doi.org/10.1016/j.bmc.2018.01.002

    Article  CAS  Google Scholar 

  48. Jadav SS, Sinha BN, Hilgenfeld R et al (2014) Thiazolidone derivatives as inhibitors of chikungunya virus. Eur J Med Chem 89:172–178. https://doi.org/10.1016/j.ejmech.2014.10.042

    Article  CAS  PubMed  Google Scholar 

  49. Mishra P, Kumar A, Mamidi P et al (2016) Inhibition of chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT). Sci Rep 6:1–13. https://doi.org/10.1038/srep20122

    Article  CAS  Google Scholar 

  50. Kumar P, Kumar D, Giri R (2019) Targeting the nsp2 cysteine protease of Chikungunya virus using FDA approved library and selected Cysteine protease inhibitors. Pathogens 8:128. https://doi.org/10.3390/pathogens8030128

    Article  CAS  PubMed Central  Google Scholar 

  51. Ivanova L, Rausalu K, Žusinaite E et al (2021) 1,3-Thiazolbenzamide derivatives as chikungunya virus nsP2 protease inhibitors. ACS Omega 6:5786–5794. https://doi.org/10.1021/ACSOMEGA.0C06191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tripathi PK, Soni A, Singh Yadav SP et al (2020) Evaluation of novobiocin and telmisartan for anti-CHIKV activity. Virology 548:250–260. https://doi.org/10.1016/j.virol.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  53. Eberle RJ, Olivier DS, Pacca CC et al (2021) In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 16:e0246319. https://doi.org/10.1371/JOURNAL.PONE.0246319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nam S, Ga YJ, Lee JY et al (2021) Radicicol inhibits Chikungunya virus replication by targeting nonstructural protein 2. Antimicrob Agents Chemother 65:e0013521. https://doi.org/10.1128/AAC.00135-21

    Article  PubMed  Google Scholar 

  55. Singh H, Mudgal R, Narwal M et al (2018) Chikungunya virus inhibition by peptidomimetic inhibitors targeting virus-specific cysteine protease. Biochimie 149:51–61. https://doi.org/10.1016/j.biochi.2018.04.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Laboratório Nacional de Computação Científica, CENAPAD, RJ, for providing high-performance computing resources. Also, we thank Dr. Helena Carla Castro from Universidade Federal Fluminense for supplying computational resources used to execute part of this work.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. In addition, this work was supported by the Brazilian agencies National Council for Scientific and Technological Development (CNPQ) and Research Support Foundation of the State of Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vitor Won-Held Rabelo. The first draft of the manuscript was written by Vitor Won-Held Rabelo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula Alvarez Abreu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2784 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelo, V.WH., de Palmer Paixão, I.C.N. & Abreu, P.A. Structural insights into the inhibition of the nsP2 protease from Chikungunya virus by molecular modeling approaches. J Mol Model 28, 311 (2022). https://doi.org/10.1007/s00894-022-05316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05316-3

Keywords

Navigation