Skip to main content

Advertisement

Log in

Mechanical properties of multi-walled beryllium-oxide nanotubes: a molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamic (MD) simulation was employed to take the molecular fingerprint of mechanical properties of beryllium-oxide nanotubes (BeONTs). In this regard, the effect of the radius, the number of walls (single-, double-, and triple-walled), and the interlayer distance, as well as the temperature on the Young’s modulus, failure stress, and failure strain, are visualized and discussed. It was unveiled that larger single-walled BeONTs have lower Young’s modulus in zigzag and armchair direction, and the highest Young’s modulus was obtained for the (8,0) zigzag and (4,4) armchair SWBeONTs as of 645.71 GPa and 624.81 GPa, respectively. Unlike Young’s modulus, however, the failure properties of the armchair structures were higher than those of zigzag ones. Furthermore, similar to SWBEONTs, an increase in the interlayer distance of double-walled BeONTs (DWBeONTs) led to a slight reduction in Young’s modulus value, while no meaningful trend was found among failure behavior. For double-walled BeONTs (TWBeONTs), the elastic modulus was obviously higher in both armchair and zigzag directions compared to DWBeONTs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Available by the corresponding author per request through the email (amin.hamed.m@gmail.com).

Code availability

Available by the corresponding author per request through the email (amin.hamed.m@gmail.com).

References

  1. Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) ZnO nanotubes: preparation and photocatalytic performance evaluation. J Photochem Photobiol, A 337:91–99. https://doi.org/10.1016/j.jphotochem.2017.01.018

    Article  CAS  Google Scholar 

  2. Marana NL, Casassa S, Longo E, Sambrano JR (2018) Computational simulations of ZnO@GaN and GaN@ZnO core@shell nanotubes. J Solid State Chem 266:217–225. https://doi.org/10.1016/j.jssc.2018.07.023

    Article  CAS  Google Scholar 

  3. Nia BA, Shahrokhi M (2018) Dilute magnetic semiconductor and half-metal behaviors in C-codoped BeO nanotubes: a first principles simulations. Chin J Phys 56:3039–3045. https://doi.org/10.1016/j.cjph.2018.10.013

    Article  CAS  Google Scholar 

  4. DE Kim D Pak (2019) Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.04.071

  5. Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461. https://doi.org/10.1111/j.1551-2916.2005.00066.x

    Article  CAS  Google Scholar 

  6. Krause M, Mücklich A, Zak A, Seifert G, Gemming S (2011) High resolution TEM study of WS2 nanotubes. Phys Status Solidi (b) 248:2716–2719. https://doi.org/10.1002/pssb.201100076

    Article  CAS  Google Scholar 

  7. Jiang Z, Xie T, Wang GZ, Yuan XY, Ye CH, Cai WP et al (2005) GeO2 nanotubes and nanorods synthesized by vapor phase reactions. Mater Lett 59:416–419. https://doi.org/10.1016/j.matlet.2004.09.036

    Article  CAS  Google Scholar 

  8. Ganji M, Sharifi N, Ahangari MG (2014) Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: a van der Waals density functional study. Comput Mater Sci 92:127–134

    Article  CAS  Google Scholar 

  9. Ahangari MG, Fereidoon A, Jahanshahi M, Ganji M (2013) Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: a DFT study. Physica E 48:148–156. https://doi.org/10.1016/j.physe.2012.12.013

    Article  CAS  Google Scholar 

  10. Hao J-H, Wang Y-F, Yin Y-H, Jiang R, Wang Y-F, Jin Q-H (2015) An ab initio study of the size-dependent mechanical behavior of single-walled AlN nanotubes. Solid State Sci 45:30–34. https://doi.org/10.1016/j.solidstatesciences.2015.05.001

    Article  CAS  Google Scholar 

  11. Cong Z, Lee S (2018) Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos Struct 194:80–86. https://doi.org/10.1016/j.compstruct.2018.03.103

    Article  Google Scholar 

  12. Liu X, Cheng D, Cao D (2009) The structure, energetics and thermal evolution of SiGe nanotubes. Nanotechnology 20:315705. https://doi.org/10.1088/0957-4484/20/31/315705

    Article  CAS  PubMed  Google Scholar 

  13. Hamed Mashhadzadeh A, Fathalian M, Ghorbanzadeh Ahangari M, Shahavi MH (2018) DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater Chem Phys 220:366–373. https://doi.org/10.1016/j.matchemphys.2018.09.016

    Article  CAS  Google Scholar 

  14. Continenza A, Wentzcovitch R, Freeman AJ (1990) Theoretical investigation of graphitic BeO. Phys Rev B 41:3540–3544. https://doi.org/10.1103/PhysRevB.41.3540

    Article  CAS  Google Scholar 

  15. Hamed Mashhadzadeh A, Ghorbanzadeh Ahangari M, Dadrasi A, Fathalian M (2019) Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of Beryllium-Oxide graphene and graphene nanobud. Appl Surf Sci 476:36–48. https://doi.org/10.1016/j.apsusc.2019.01.083

    Article  CAS  Google Scholar 

  16. Zarghami Dehaghani M, Hamed Mashhadzadeh A, Salmankhani A, Karami Z, Habibzadeh S, Ganjali MR et al (2020) Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis. Eng Fract Mech 235:107194. https://doi.org/10.1016/j.engfracmech.2020.107194

    Article  Google Scholar 

  17. Zarghami Dehaghani M, Salmankhani A, Hamed Mashhadzadeh A, Habibzadeh S, Abida O, Reza Saeb M (2021) Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis. Eng Fract Mech 244:107552. https://doi.org/10.1016/j.engfracmech.2021.107552

    Article  Google Scholar 

  18. Rostamiyan Y, Mohammadi V, Hamed Mashhadzadeh A (2020) Mechanical, electronic and stability properties of multi-walled beryllium oxide nanotubes and nanopeapods: a density functional theory study. J Mol Model 26:76. https://doi.org/10.1007/s00894-020-4328-5

    Article  CAS  PubMed  Google Scholar 

  19. Sorokin P, Fedorov A, Chernozatonskii L (2006) Struct prop BeO nanotubes 48:398–401. https://doi.org/10.1134/S106378340602034X

    Article  CAS  Google Scholar 

  20. Fathalian A, Kanjouri F, Jalilian J (2013) BeO nanotube bundle as a gas sensor. Superlattice Microst 60:291–299. https://doi.org/10.1016/j.spmi.2013.04.028

    Article  CAS  Google Scholar 

  21. Chigo Anota E, Cocoletzi GH (2013) Electronic properties of functionalized (5,5) beryllium oxide nanotubes. J Mol Graph Model 42:115–119. https://doi.org/10.1016/j.jmgm.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  22. Fereidoon A, Mostafaei M, Ganji MD, Memarian F (2015) Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs. Superlattice Microst 86:126–133. https://doi.org/10.1016/j.spmi.2015.07.036

    Article  CAS  Google Scholar 

  23. Bevilacqua AC, Rupp CJ, Baierle RJ (2016) First principles study on defectives BN nanotubes for water splitting and hydrogen storage. Chem Phys Lett 653:161–166. https://doi.org/10.1016/j.cplett.2016.04.093

    Article  CAS  Google Scholar 

  24. Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2:e1500969. https://doi.org/10.1126/sciadv.1500969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. ZarghamiDehaghani M, EsmaeiliSafa M, Yousefi F, Salmankhani A, Karami Z, Dadrasi A et al (2021) Fracture behavior of SiGe nanosheets: mechanics of monocrystalline vs. polycrystalline structure. Eng Fract Mech 251:107782. https://doi.org/10.1016/j.engfracmech.2021.107782

    Article  Google Scholar 

  26. Salmankhani A, Karami Z, Hamed Mashhadzadeh A, Zarghami Dehaghani M, Reza Saeb M, Fierro V et al (2021) A theoretical scenario for the mechanical failure of boron carbide nanotubes. Comput Mater Sci 186:110022. https://doi.org/10.1016/j.commatsci.2020.110022

    Article  CAS  Google Scholar 

  27. Memarian F, Fereidoon A, Khodaei S, Mashhadzadeh AH, Ganji MD (2017) Molecular dynamic study of mechanical properties of single/double wall SiCNTs: consideration temperature, diameter and interlayer distance. Vacuum 139:93–100. https://doi.org/10.1016/j.vacuum.2017.02.014

    Article  CAS  Google Scholar 

  28. Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes – molecular dynamics simulations. Comput Mater Sci 43:664–669. https://doi.org/10.1016/j.commatsci.2008.01.038

    Article  CAS  Google Scholar 

  29. Grindon C, Harris S, Evans T, Novik K, Coveney P, Laughton C (2004) Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos Trans R Soc Lond Ser Math Phys Eng Sci 362:1373–86. https://doi.org/10.1098/rsta.2004.1381

    Article  Google Scholar 

  30. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000. https://doi.org/10.1103/PhysRevB.37.6991

    Article  CAS  Google Scholar 

  31. Cumings J, Zettl A (2000) Mass-production of boron nitride double-wall nanotubes and nanococoons. Chem Phys Lett 316:211–216. https://doi.org/10.1016/S0009-2614(99)01277-4

    Article  CAS  Google Scholar 

  32. Barick A, Tripathy D (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Appl Clay Sci 52:312–321. https://doi.org/10.1016/j.clay.2011.03.010

    Article  CAS  Google Scholar 

  33. Jalilian J, Safari M, Naderizadeh S (2016) Buckling effects on electronic and optical properties of BeO monolayer: first principles study. Comput Mater Sci 117:120–126. https://doi.org/10.1016/j.commatsci.2016.01.032

    Article  CAS  Google Scholar 

  34. Sherafati M, Shokuhi Rad A, Ardjmand M, Heydarinasab A, Peyravi M, Mirzaei M (2018) Beryllium oxide (BeO) nanotube provides excellent surface towards adenine adsorption: a dispersion-corrected DFT study in gas and water phases. Curr Appl Phys 18:1059–1065. https://doi.org/10.1016/j.cap.2018.05.024

    Article  Google Scholar 

  35. Rastegar SF, Ahmadi Peyghan A, Soleymanabadi H (2015) Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Physica E 68:22–27. https://doi.org/10.1016/j.physe.2014.12.005

    Article  CAS  Google Scholar 

  36. Shahrokhi M, Leonard C (2016) Quasi-particle energies and optical excitations of wurtzite BeO and its nanosheet. J Alloy Compd 682:254–262. https://doi.org/10.1016/j.jallcom.2016.04.288

    Article  CAS  Google Scholar 

  37. Dadrasi A, Albooyeh AR, Hamed Mashhadzadeh A (2019) Mechanical properties of silicon-germanium nanotubes: a molecular dynamics study. Appl Surf Sci 498:143867. https://doi.org/10.1016/j.apsusc.2019.143867

    Article  CAS  Google Scholar 

  38. Salmankhani A, Karami Z, Hamed Mashhadzadeh A, Saeb MR, Fierro V, Celzard A (2020) Mechanical properties of C3N nanotubes from molecular dynamics simulation studies. Nanomaterials 10:894

    Article  CAS  Google Scholar 

  39. Setoodeh A, Attariani H, Jahanshahi M (2011) Mechanical properties of silicon-germanium nanotubes under tensile and compressive loadings. J Nano Res 15:105–114. https://doi.org/10.4028/www.scientific.net/JNanoR.15.105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Navid Shahab analyzed the data, discussed the results, and designed the figures and table. Yasser Rostamiyan analyzed and rechecked the results for correctness and supervising. Christos Spitas supervising and wrote the initial draft. Amin Hamed Mashhadzadeh designed the case study, wrote the LAMMPS code of the present article, and carried out the computational measurements. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Amin Hamed Mashhadzadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamiyan, Y., Shahab, N., Spitas, C. et al. Mechanical properties of multi-walled beryllium-oxide nanotubes: a molecular dynamics simulation study. J Mol Model 28, 300 (2022). https://doi.org/10.1007/s00894-022-05303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05303-8

Keywords

Navigation