Skip to main content
Log in

The adsorption of NO2, SO2, and O3 molecules on the Al-doped stanene nanotube: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Adsorption of pollutant gas molecules (NO2, SO2, and O3) on the surface of the Al-doped stanene nanotube was investigated within the first principle calculations of density functional theory (DFT). Adsorption mechanisms were studied by analyzing optimized structures, band structures, projected density of states (PDOS), charge density difference (CDD), molecular orbitals, and band theory. Investigation of charge transfer by Mulliken population showed that NO2 accumulated while SO2 and O3 depleted charge density on the Al-doped nanotube. The differences in band structures before and after adsorption implied that the electronic characteristics of Al-doped nanotube changed dramatically in case of NO2 adsorption, which converted Al-doped nanotube to a semiconductor material. High adsorption energy and the significant overlap between PDOS spectra indicated that the adsorption process was chemisorption for NO2, SO2, and O3 on the doped nanotube with the obtained order of O3 > SO2 > NO2. The results showed that the adsorption of NO2, SO2, and O3 occurred on the Al-doped stanene nanotube, and that all the three gas molecules could be detected by Al-doped stanene nanotube with various detection strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brauer M, Casadei B, Harrington RA, Kovacs R, Sliwa K (2021) Taking a stand against air pollution—the impact on cardiovascular disease. J Am Coll Cardiol 77(13):1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pandey A, Brauer M, Cropper M, Balakrishnan K, Mathur P, Dey S, Turkgulu B, Kumar GA, Khare M, Beig G (2021) Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. Lancet Planet Health 5:e25–e38

    Article  Google Scholar 

  3. Münzel T, Hahad O, Daiber A (2021) Running in polluted air is a two-edged sword —physical exercise in low air pollution areas is cardioprotective but detrimental for the heart in high air pollution areas. Eur Heart J 42:2498–2500

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chi C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M (2020) The role of air pollution (PM and NO 2) in COVID-19 spread and lethality: a systematic review. Environ Res 191:1102109

    Google Scholar 

  5. Yogi R, Jaiswal NK (2019) Adsorption of CO gas molecules on zigzag BN/AlN nanoribbons for nano sensor applications. Phys Lett 383:532–538

    Article  CAS  Google Scholar 

  6. Gillespie-Bennett J, Pierse N, Wickens K, Crane J, Howden-Chapman P, the Housing Heating and Health Study Research Team (2011) The respiratory health effects of nitrogen dioxide in children with asthma. Eur Respir J 38:303–309

    Article  CAS  PubMed  Google Scholar 

  7. Faustini A, Rapp R, Forastiere F (2014) Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J 44:744–53

    Article  CAS  PubMed  Google Scholar 

  8. Pattenden S, Hoek G, Braun-Fahrländer C, Forastiere F, Kosheleva A, Neuberger M, Fletcher T (2006) NO2 and children’s respiratory symptoms in the PATY study. Occup Environ Med 63:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He W, Zhao Y, Xiong Y (2020) Bilayer polyaniline−wo3thin-film sensors sensitive to NO2. ACS Omega 5:9744–9751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy JI, Lee K, Yanagisawa Y, Eng D, Hutchinson P, Spengler JD (1999) Determinants of nitrogen dioxide concentrations in indoor ice skating rinks. Am J Public Health 88:1781–1786

    Article  Google Scholar 

  11. Erglund B, Etal M (1993) Health risk evaluation of nitrogen oxides. Scand J Work Environ Health 75:14

  12. Lin W, Brunekreef B, Gehring U (2013) Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheeze in children. Int J Epidemiol 42:1724–1737

    Article  PubMed  Google Scholar 

  13. Ye Z, Duan Ch, Sheng R, Xu J, Wang H, Zeng L (2018) A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells. Talanta 176:389–396

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-Ahumada E, Pez-Olvera AL, Jancik V, Sánchez-Bautista JE, Lez-Zamora EG, Martis V, Williams D, Ibarra IA (2020) MOF materials for the capture of highly toxic H2S and SO2. Organometallics 39:883–915

    Article  Google Scholar 

  15. Van Tong Ph, Hoa ND, Th NH, Van Duy N, Hung ChM, Van Hieu N (2018) SO2 and H2S sensing properties of hydrothermally synthesized CuO nanoplates. J Electron Mater 47:7170–7178

    Article  Google Scholar 

  16. Buadong D, Jinsart W, Funatagawa I, Karita K, Yano E (2009) Association between PM 10 and O3 levels and hospital visits for cardiovascular diseases in Bangkok, Thailand. J Epidemiology 19:182–188

    Article  Google Scholar 

  17. Xue Ch, Ye C, Zhang Ch, Catoire V, Liu P, Gu R, Zhang J, Ma Zh, Xi Z, Zhang W, le Krysztofiak YRG, Tong Sh, Xue L, An J, Ge M, Mellouki A, Mu Y (2021) Evidence for strong HONO emission from fertilized agricultural fields and its remarkable impact on regional O3 pollution in the Summer North China Plain. ACS Earth Space Chem 5:340–347

    Article  CAS  Google Scholar 

  18. Valerio F, Stella A, Munizzi A (2000) Correlations between PAHs and CO, NO, NO2, O3 along an urban street. Taylor & Francis 20:235–244

    CAS  Google Scholar 

  19. Triantafyllou AG, Zoras S, Evagelopoulos V, Garas S (2008) PM10, O3, CO concentrations and elemental analysis of airborne particles in a school building. Water Air Soil Pollut 8:77–87

    Article  CAS  Google Scholar 

  20. Pathak RK, Presto AA, Lane TE, Stanier CO, Donahue NM, Pandis SN (2007) Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction. Atmos Chem Phys 7:3811–3821

    Article  CAS  Google Scholar 

  21. Avise J, Chen J, Lamb B, Wiedinmyer C, Guenther A, Salathé E, Mass C (2009) Attribution of projected changes in summertime US ozone and PM 2.5 concentrations to global changes. Atmos Chem Phys 9:1111–1124

    Article  CAS  Google Scholar 

  22. Calfapietra C, Fares S, Loreto F (2009) Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ Pollut 157:1478–1486

    Article  CAS  PubMed  Google Scholar 

  23. Calfapietra C, Manes FS, Morani A, Sgrigna G, Loreto F (2013) Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  PubMed  Google Scholar 

  24. Streng AG (1961) Tables of Ozone Properties. J Chem Eng Data J CHEM ENG DATA 6:431–436

    Article  CAS  Google Scholar 

  25. Guo JJ, Fiore AM, Murray LT, Jaffe DA, Schnell JL, Moore ChT, Milly GP (2018) Average versus high surface ozone levels over the continental USA: model bias, background influences, and interannual variability. Atmos Chem Phys 18:12123–12140

    Article  CAS  Google Scholar 

  26. Bell ML, Peng RD, Dominici F (2006) The exposure–response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ Health Perspect 114:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagarajan V, Chandiramouli R (2018) A novel approach for detection of NO2 and SO2 gas molecules using graphane nanosheet and nanotubes - a density functional application. Diam Relat Mater 85:0925–9635

    Article  Google Scholar 

  28. Salih E, A. Ayesh I, (2018) CO, CO2, and SO2 detection based on functionalized graphene nanoribbons: First principles study. Diam Relat Mater 85:53–62

    Google Scholar 

  29. Zhao Y, Hong H, Gong Q, Ji L (2013) 1D Nanomaterials: synthesis, properties, and applications. J Nanomater 2013:1687–4110

    Article  Google Scholar 

  30. Machín A, Fontánez K, Arango JC, Ortiz D, De León J, Pinilla S, Nicolosi V, Petrescu FI, Morant C, Márquez F (2021) One-Dimensional (1D) Nanostructured materials for energy applications. Materials 14:2609

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ansón-Casaos A, Ciria JC, Sanahuja-Parejo O, Vı́ctor-Román S, González-Domı́nguez JM, Garcı́a-Bordejé E, Benito AM, Maser WK (2020) The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Phys Chem Chem Phys 22:11474

    Article  PubMed  Google Scholar 

  32. De Sousa JM, Bizao RA, Sousa Filho VP, Aguiar AL, Coluci VR, Pugno NM, Girao EC, Souza Filho AG, Galvao DS (2019) Elastic properties of graphyne-based nanotubes. Mater Sci 1. https://doi.org/10.48550/arXiv.1905.02104

  33. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116:5951–5956

    Article  CAS  Google Scholar 

  34. Abbasi A, Jahanbin Sardroodi J (2018) Interaction of sulfur trioxide molecules with armchair and zigzag stanene-based nanotubes: electronic properties exploration by DFT calculations. Adsorption 24:443–458

    Article  CAS  Google Scholar 

  35. Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbent for nitrogen oxides. Ind Eng Chem Res 40:4288–4291

    Article  CAS  Google Scholar 

  36. Ellison MD, Crotty MJ, Koh D, Spray RL, Tate KE (2004) Adsorption of NH3 and NO2 on single-walled carbon nanotubes. J Phys ChemB 108:7938–7943

    Article  CAS  Google Scholar 

  37. Zhang X, Yang B, Wang X, Luo Ch (2012) Effect of plasma treatment on multi-walled carbon nanotubes for the detection of H2S and SO2. Sensors 12:9375–9385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mittal M, Kumar A (2014) Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens Actuators B Chem 203:349–362

    Article  CAS  Google Scholar 

  39. Hoang ND, Van Cat V, Nam MH, Phan VN, Le AT, Van Quy N (2019) Enhanced SO2 sensing characteristics of multi-wall carbon nanotubes based mass-type sensor using two-step purification process. Sens Actuators A 295:696–702

    Article  CAS  Google Scholar 

  40. Abbasi A, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Yaghoobi M (2018) Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors. Appl Surf Sci 435:733–742

    Article  CAS  Google Scholar 

  41. Abbasi A, Jahanbin Sardroodi J (2018) Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: insights from DFT computations. Int J Appl Phys 124:165302

    Article  Google Scholar 

  42. Sonawane MR, Nagare BJ, Habale D, Shivade RK (2013) Comparative study of adsorption of O2, CO2, NO2 and SO2 on pristine and Si-Doped Carbon Nanotubes. Open J Adv Mater Res 678:179–184

    Article  CAS  Google Scholar 

  43. Atram RG, Sonawane MR (2019) Comparative study of adsorption of ozone molecule on pristine and Si doped single wall carbone nanotube by density functional theory. Mater Phys Mech 42:1605–8119

    Google Scholar 

  44. Zhang H-P, Hou J-L, Wang Y, Tang P-P, ZhangY-P L-Y, Liu Ch, Tang Y (2017) Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185:509–517

    Article  CAS  PubMed  Google Scholar 

  45. Manzhos S (2020) Machine learning for the solution of the Schrödinger equation. Mach Learn: Sci Technol 1:013002

    Google Scholar 

  46. Koch O, Kreuzer W, Scrinzi A (2006) Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl Math Comput 173:960–976

    Google Scholar 

  47. Romera E, Dehesa JS (1994) Weizsäcker energy of many-electron systems. Phys Rev A 50:256

    Article  CAS  PubMed  Google Scholar 

  48. Artacho E, Gale JD, García A, Junquera V, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Condens Matter Phys 14:0953–8984

    Google Scholar 

  49. Shao X, Mi W, Pavanello M (2021) GGA-level subsystem DFT achieves Sub-kcal/mol accuracy intermolecular interactions by mimicking nonlocal functionals. J Chem Theory Comput 7:3455–3461

    Article  Google Scholar 

  50. González Ramirez IA, Alcalá Varilla LA, Montoya JA (2019) A DFT study about the effects of exchange-correlation functional on the structural and electronic properties of Anatase. J Phys: Conf Ser 1219:7–9

    Google Scholar 

  51. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413

    Article  Google Scholar 

  52. Skriganov MM (1987) Brillouin zones and the geometry of numbers. J Sov Math 36:140–154

    Article  Google Scholar 

  53. Dion M, Jacobson N, Schröder E, Hyldgaard P, Simak S, Langreth DC, Lundqvist BI (2003) Van der Waals density functional for layered structures. Phys Review lett 91:126402

    Article  Google Scholar 

  54. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Review lett 92:246401

    Article  CAS  Google Scholar 

  55. Amft M, Lebègue S, Eriksson O, Skorodumova NV (2011) Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions. J Condens Matter Phys 23:395001

    Article  Google Scholar 

  56. Motaee A, Javadian S (2021) Khosravian M, Influence of adsorption energy in graphene production via surfactant-assisted exfoliation of graphite: a graphene-dispersant design. ACS Appl Nano Mater 4:3545–3556

    Article  CAS  Google Scholar 

  57. Wang B, Wang ShL, Truhlar DG (2014) Modeling the partial atomic charges in inorganometallic molecules and solids and charge redistribution in lithium-ion cathodes. J Chem Theory Comput 10:5640–5650

    Article  CAS  PubMed  Google Scholar 

  58. Bo Z, Guo X, Wei X, Yang H, Yan J, Cen K (2019) Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene. Phys E Low-dimens Syst Nanostruct 109:156–163

    Article  CAS  Google Scholar 

  59. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  60. Xi Xu, Li J, Zhang Xu, Xu H, Ke ZhF, Zhao C (2015) Removal of NO with silicene: a DFT investigation. RSC Adv 5:22135

    Article  Google Scholar 

  61. Liu H, Xu L, Gui Y, Ran L, Chen X (2021) Adsorption properties of Ag 2 O-MoSe 2 towards SF 6 decomposed products. Vacuum 189:110248

    Article  CAS  Google Scholar 

  62. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  63. Pan HR, Chen HJ, Wu ZH, Ge P, Ye Sh, Lee GH, Hsu HF (2021) Structural and spectroscopic evidence for a side-on Fe(III)–superoxo complex featuring discrete O-O bond distances. JACS Au 1:1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komorowski L (1987) Chemical Hardness and L. Pauling’s scale of electronegativity. Zeitschrift für Naturforschung A 42:767–773

    Article  CAS  Google Scholar 

  65. Tozini D, Forti M, Gargano P, Alonso PR, Rubiolo GH (2015) Charge difference calculation in Fe/Fe3 O4 interfaces from DFT results. Procedia Mater Sci 9:612–618

    Article  CAS  Google Scholar 

  66. Prats H, Stamatakis M (2022) Atomistic and electronic structure of metal clusters supported on transition metal carbides: implications for catalysis. J Mater Chem A 10:1522–1534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nafiseh Karimi wrote the main text manuscript, performed all DFT calculations, and reviewed the manuscript. Jaber Jahanbin Sardroodi: supervision 1. Alireza Ebrahimzadeh Rastkar: supervision 2. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Nafiseh Karimi or Jaber Jahanbin Sardroodi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, N., Sardroodi, J.J. & Rastkar, A.E. The adsorption of NO2, SO2, and O3 molecules on the Al-doped stanene nanotube: a DFT study. J Mol Model 28, 290 (2022). https://doi.org/10.1007/s00894-022-05296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05296-4

Keywords

Navigation