Skip to main content
Log in

Determination of the standard enthalpy of formation of iodine compounds through the G2 and G3(MP2)//B3-SBK theories

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The domain of application of the G3(MP2)//B3-SBK theory was expanded, and its efficiency was evaluated to determinate enthalpies of formation of forty-one iodine compounds. The results were compared to those obtained with the G2 theory for the same set of molecules. The G3(MP2)//B3-SBK theory showed a mean deviation and deviation standard equal to 3.7 kcal mol−1 and 6.0 kcal mol−1, respectively. The G2 theory (mean deviation = 3.1 kcal mol−1 and standard deviation = 4.9 kcal mol−1) presented a lower error and standard deviation, but at a significantly higher computational cost. For a more complete evaluation, as a secondary part of the work, it also used different functionals B3LYP, M06-2X, WB97XD, and MP2 method with four different basis sets 6-311G(d,p), LANL2DZ, jorge-ADZP, and CEP-31G(d). The best density functional/basis set combination was obtained with M06-2X/CEP-31G(d) among the three mentioned functionals. However, the produced mean deviation is significant and equal to 17.3 kcal mol−1, with a standard deviation equal to 23.0 kcal mol−1. The 6-311G(d,p) basis achieved the best performance with the MP2 method, generating an equally significant mean deviation of 12.8 kcal mol−1 with a standard deviation equal to 18.7 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tatsuo K (2015) Iodine chemistry and applications. Wiley, Hoboken

    Google Scholar 

  2. Santos VM, Afonso JC (2013) QNEsc 35:297–298

    Google Scholar 

  3. Santos VM, Afonso JC (2012) Quim Nova 35:398–402

    Article  Google Scholar 

  4. Leal RC, Custodio R (2019) Comput Theor Chem 1149:1–7

    Article  CAS  Google Scholar 

  5. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  6. Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) J Chem Phys 139:184108–184119

    Article  PubMed  CAS  Google Scholar 

  7. Silva CS (2020) Theor Chem Acc 139:135–142

    Article  CAS  Google Scholar 

  8. Silva CS, Custodio R (2018) Theor Chem Acc 137:24–32

    Article  CAS  Google Scholar 

  9. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108–084119

    Article  PubMed  CAS  Google Scholar 

  10. Silva CS, Custodio R (2015) Rev Proc Q 9:66–67

    Article  Google Scholar 

  11. Silva CS, Custodio R (2019) J Phys Chem A 123:8314–8320

    Article  CAS  Google Scholar 

  12. Silva CS, Pereira DH, Custodio R (2016) J Chem Phys 144:204118–204126

    Article  CAS  Google Scholar 

  13. Leal RC, Pereira DH, Custodio R (2018) Comput Theor Chem 1123:161–168

    Article  CAS  Google Scholar 

  14. Rocha CMR, Rodrigues JAR, Moran PJS, Custodio R (2014) J Mol Model 20:2524–2531

    Article  PubMed  CAS  Google Scholar 

  15. Filho SQA, Costa AMF, Ribeiro IHS, Custodio R, Pereira DH (2019) Comput Theor Chem 1166:112589–112595

    Article  CAS  Google Scholar 

  16. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  17. Glukhovtsev MN, Pross A, McGrath MP, Radom L (1995) J Chem Phys 103:1878–1885

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (Revision A.02)

  19. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  20. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  21. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties selected values for inorganic and C1 C2 organic substance in SI units. J Phys Chem Ref Data 11:1–392

    Google Scholar 

  22. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026–6033

    Article  Google Scholar 

  23. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  24. Linstrom PJ, Mallard WG (2022) NIST CHEMISTRY WebBook, NIST Standard Reference Database Number 69

  25. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  26. Bergner A, Dolg M, Küchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  27. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622–5629

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  32. Chai JD, Head-Gorgon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  33. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  34. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  35. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  36. Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer HF (ed) Methods of Electronic Structure Theory. Modern Theoretical Chemistry, Springer Boston, Massachusetts, pp 1–27

    Google Scholar 

  37. Neto AC, Muniz EP, Centoducatte R, Jorge FE (2005) J Mol Struc 718:219–224

    Article  CAS  Google Scholar 

  38. Oliveira PJP, Barros CL, Jorge FE, Neto AC, Campos M (2010) J Mol Struc 948:43–46

    Article  CAS  Google Scholar 

  39. Ruscic B, Pinzon RE, Morton ML, Laszewski GV, Bittner S, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979–9997

    Article  CAS  Google Scholar 

  40. Ruscic B, Pinzon RE, Laszewski GV, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) J Phys Conf Ser 16:561–570

    Article  CAS  Google Scholar 

  41. Settle JL, Jeffes JHE, O’Hare PAG, Hubbard WN (1976) J Inorg Nucl Chem 28:135–140

    Article  Google Scholar 

  42. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  43. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105–124112

    Article  PubMed  CAS  Google Scholar 

  44. Sookhaki E, Namazian M (2021) J Mol Graphics Modell 108:107985–107991

    Article  CAS  Google Scholar 

  45. Richard L, Gaona X (2011) Geochem Cosmochim Acta 75:7304–7310

    Article  CAS  Google Scholar 

  46. Bodi A, Shuman NS, Baer T (2009) Phys Chem Chem Phys 11:11013–11021

    Article  CAS  PubMed  Google Scholar 

  47. Lago AF, Kercher JP, BÖdi A, Sztáray B, Miller B, Wurzelmann D, Baer T (2005) J Phys Chem 109:1802–1809

    Article  CAS  Google Scholar 

  48. Dávalos JZ, Notario R, Cuevas CA, Oliva JM, Saiz-Lopez A (2017) Comput Theor Chem 1099:36–44

    Article  CAS  Google Scholar 

  49. Zherikova KV, Verevkin SP (2019) J Therm Anal Calorim 138:4045–4059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Rogério Custodio for the help in the discussion and suggestions. Ysa Beatriz Dantas Marinho and Maria Andreizi Monteiro de Andrade thank the Institutional Research Support Program and the Research and Innovation Dean (PROPI) from IFRN for the research grants granted in the Research Notices nº 01/2019 (1st Call)—PROPI/RE/IFRN—Development of Research and Innovation, Projects nº 04/2020—PROPI/RE/IFRN—Research and Innovation Projects with Support, respectively. The authors would like to acknowledge the National Center of High-Performance Computing in Ceará (CENAPAD-UFC) for access to their computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

Leal, R. C. and Sousa, I. L. analysis of data and writing. Marinho, Y. B. D. and Andrade, M. A. M. performed the calculations.

Corresponding author

Correspondence to Régis Casimiro Leal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XXI − Brazilian Symposium of Theoretical Chemistry (SBQT2021)

Appendix

Appendix

Table 4

Table 4 Experimental enthalpies of formation and calculated errors with different methods regarding the experimental data. Values in kcal mol−1

Table 5

Table 5 Experimental enthalpies of formation and calculated errors with different methods regarding the experimental data. Values in kcal mol−1

Table 6

Table 6 Total energies (in hartrees) of atomic species with different methods

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, R.C., Marinho, Y.B.D., de Andrade, M.A.M. et al. Determination of the standard enthalpy of formation of iodine compounds through the G2 and G3(MP2)//B3-SBK theories. J Mol Model 28, 246 (2022). https://doi.org/10.1007/s00894-022-05243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05243-3

Keywords

Navigation