Skip to main content
Log in

Spirothienoquinoline-based acceptor molecular systems for organic solar cell applications: DFT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this research, eight three-dimensional benzothiadiazole and spirothienoquinoline-based donor molecules of the A-D-A-D-A configuration were formulated by introducing new acceptor groups (A1A4) to the terminal sites of recently synthesized potent donor molecule (tBuSAF-Th-BT-Th-tBuSAF). Frontier molecular orbital analysis, reorganization energies, the density of states analysis, transition density matrix analysis, dipole moment, open-circuit voltage, and some photophysical properties were all assessed using CAMB3LYP/LanL2DZ. The optoelectronic properties of freshly proposed compounds were compared to the reference molecule (SQR). Due to the existence of robust electron-attracting acceptor moiety, SQM3 and SQM7 had the greatest maximum absorption of all other investigated molecules, with the values of 534 and 536 nm, respectively. The maximum dipole moment, narrow bandgap (3.81 eV and 3.66 eV), and HOMO energies (− 5.92 eV, 5.95 eV) are also found in SQM3 and SQM7, respectively. The SQM3 molecule also possesses the least reorganization energy for hole mobility (0.007237 eV) than all other considered molecules. The open-circuit voltage of all the molecules considered to be donors, was calculated with respect to PC61BM and it is estimated that except SQM7 and SQM3 all other newly developed molecules have improved open-circuit voltage. The findings show that most of the designed donor molecules can perform better experimentally and should be employed for practical implementations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data will be available if required.

Code availability

Not applicable.

References

  1. Xu X, et al. (2020) Recent advances in stability of organic solar cells. EnergyChem, 100046

  2. Wang G et al (2019) All-polymer solar cells: recent progress, challenges, and prospects. Angew Chem Int Ed 58(13):4129–4142

    Article  CAS  Google Scholar 

  3. Cheng Y, Ding L (2021) Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat 1(3):324–344

    Article  Google Scholar 

  4. Chen H-Y et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3(11):649–653

    Article  CAS  Google Scholar 

  5. Liu S et al (2020) High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics 14(5):300–305

    Article  CAS  Google Scholar 

  6. Guo J et al (2020) End group tuning in small molecule donors for non-fullerene organic solar cells. Dyes Pigm 175:108078

    Article  CAS  Google Scholar 

  7. Ding G et al (2018) Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties. Chem Phys 500:67–73

    Article  CAS  Google Scholar 

  8. Wang X et al (2016) Effect of fluorination and symmetry on the properties of polymeric photovoltaic materials based on an asymmetric building block. RSC Adv 6(93):90051–90060

    Article  CAS  Google Scholar 

  9. Xu C et al (2021) Wide bandgap polymer with narrow photon harvesting in visible light range enables efficient semitransparent organic photovoltaics. Adv Func Mater 31(52):2107934

    Article  CAS  Google Scholar 

  10. Xu W et al (2022) Smart ternary strategy in promoting the performance of polymer solar cells based on bulk-heterojunction or layer-by-layer structure. Small 18(4):2104215

    Article  CAS  Google Scholar 

  11. Hou J et al (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119–128

    Article  CAS  PubMed  Google Scholar 

  12. Mahmood A et al (2018) A novel thiazole based acceptor for fullerene-free organic solar cells. Dyes Pigm 149:470–474

    Article  CAS  Google Scholar 

  13. Ma R, et al. (2022) Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter

  14. Ma R, et al. (2021) Air‐processed efficient organic solar cells from aromatic hydrocarbon solvent without solvent additive or post‐treatment: insights into solvent effect on morphology. Energy & Environmental Materials

  15. Wang Z et al (2018) Modulation of electron-donating ability in D-A–A small molecules for application in organic solar cells. The J Phys Chem C 123(2):1069–1081

    Article  CAS  Google Scholar 

  16. Collins SD et al (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7(10):1602242

    Article  CAS  Google Scholar 

  17. Wan J et al (2017) Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy Environ Sci 10(8):1739–1745

    Article  CAS  Google Scholar 

  18. Hachi M et al (2020) New small organic molecules based on thieno [2, 3-b] indole for efficient bulk heterojunction organic solar cells: a computational study. Mol Phys 118(8):e1662956

    Article  CAS  Google Scholar 

  19. Hachi M, et al. (2020) The influence of the structural variations in the π-bridge of D-π-A organic dyes on the efficiency of dye-sensitized solar cells (DSSCs): A DFT computational study. in 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE

  20. Ma R et al (2020) Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells. ACS Energy Lett 5(8):2711–2720

    Article  CAS  Google Scholar 

  21. Ma R, et al. (2021) All‐polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, e58

  22. Schlachter A et al (2022) Efficient ternary bulk heterojunction organic solar cells using a low-cost nonfullerene acceptor. J Mater Chem C 10(11):4372–4382

    Article  CAS  Google Scholar 

  23. Mahmood A et al (2018) Introducing four 1, 1-dicyanomethylene-3-indanone end-capped groups as an alternative strategy for the design of small-molecular nonfullerene acceptors. J Phys Chem C 122(51):29122–29128

    Article  CAS  Google Scholar 

  24. Mahmood A et al (2019) First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. Phys Chem Chem Phys 21(4):2128–2139

    Article  CAS  PubMed  Google Scholar 

  25. Saragi TP et al (2007) Spiro compounds for organic optoelectronics. Chem Rev 107(4):1011–1065

    Article  CAS  PubMed  Google Scholar 

  26. Li P et al (2020) Three-dimensional spirothienoquinoline-based small molecules for organic photovoltaic and organic resistive memory applications. ACS Appl Mater Interfaces 12(10):11865–11875

    Article  CAS  PubMed  Google Scholar 

  27. Rasool A, et al. (2021) Bithieno thiophene-based small molecules for application as donor materials for organic solar cells and hole transport materials for perovskite solar cells. ACS Omega

  28. Ans M et al (2019) Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. J Mol Model 25(8):1–12

    Article  CAS  Google Scholar 

  29. Frisch M, et al. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. See also: URL: http://wwwgaussian.com. 2009.

  30. Dennington R, TA Keith JM Millam (2016) GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA

  31. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y et al (2004) Tests of second-generation and third-generation density functionals for thermochemical kinetics. Phys Chem Chem Phys 6(4):673–676

    Article  CAS  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  34. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed S, Kalita DJ (2020) End-capped group manipulation of non-fullerene acceptors for efficient organic photovoltaic solar cells: a DFT study. Phys Chem Chem Phys 22(41):23586–23596

    Article  CAS  PubMed  Google Scholar 

  36. Zahid S et al (2021) Quantum chemical approach of donor− π–acceptor based arylborane–arylamine macrocycles with outstanding photovoltaic properties toward high-performance organic solar cells. Energy Fuels 35(18):15018–15032

    Article  CAS  Google Scholar 

  37. Gorelsky S (2010) SWizard program. University of Ottawa, Ottawa, Canada

    Google Scholar 

  38. Deschenes LA and A David A Vanden BoutUniversity of Texas, Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.). Web site: www. originlab. com. Commercial price: 595.Academicprice: 446. 2000, ACS Publications.

  39. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comp Chem 29(5):839–845

    Article  CAS  Google Scholar 

  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  41. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339–2350

    Article  CAS  PubMed  Google Scholar 

  42. Ul Ain Q et al (2021) Designing of benzodithiophene acridine based donor materials with favorable photovoltaic parameters for efficient organic solar cell. Comput Theor Chem 1200:113238

    Article  CAS  Google Scholar 

  43. Afzal Z, et al. (2020) Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Modeling 26(6)

  44. Li S-B et al (2016) Theoretical design and characterization of high-efficiency organic dyes with different electron-withdrawing groups based on C275 toward dye-sensitized solar cells. New J Chem 40(11):9320–9328

    Article  CAS  Google Scholar 

  45. Ren K et al (2021) Electronic and optical properties of atomic-scale heterostructure based on MXene and MN (M = Al, Ga): a DFT Investigation. Nanomaterials 11(9):2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou D et al (2019) Nonfullerene small-molecule acceptors with extended optical absorption based on the “spliced” strategy for organic solar cells. Organic Materials 1(01):071–077

    Article  CAS  Google Scholar 

  47. Peng Z et al (2021) Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells. Adv Mater 33(49):2106732

    Article  CAS  Google Scholar 

  48. Sutradhar T, Misra A (2018) Role of electron-donating and electron-withdrawing groups in tuning the optoelectronic properties of difluoroboron–napthyridine analogues. J Phys Chem A 122(16):4111–4120

    Article  CAS  PubMed  Google Scholar 

  49. Peng Z et al (2021) Modulation of morphological, mechanical, and photovoltaic properties of ternary organic photovoltaic blends for optimum operation. Adv Energy Mater 11(8):2003506

    Article  CAS  Google Scholar 

  50. Saeed MU, et al. (2022) End-capped modification of Y-shaped dithienothiophen [3, 2-b]-pyrrolobenzothiadiazole (TPBT) based non-fullerene acceptors for high performance organic solar cells by using DFT approach. Surfaces and Interfaces, 101875

  51. Khan MU et al (2019) Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 9(45):26402–26418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akram SJ et al (2022) Designing of the indacenodithiophene core-based small molecules for optoelectronic applications: a DFT approach. Sol Energy 237:108–121

    Article  CAS  Google Scholar 

  53. Ans M et al (2018) Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3(45):12797–12804

    Article  CAS  Google Scholar 

  54. Bharanidharan S, Myvizhi P (2018) Frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) surface of 2-(4-chlorophenyl)-1-((furan-2-yl) methyl)-4, 5-dimethyl-1H-imidazole using DFT method. Int J Pure Applied Math 119:6769–6777

    Google Scholar 

  55. Kumaresan P et al (2014) Fused-thiophene based materials for organic photovoltaics and dye-sensitized solar cells. Polymers 6(10):2645–2669

    Article  CAS  Google Scholar 

  56. Zubair I et al (2022) Tuning the optoelectronic properties of indacenodithiophene based derivatives for efficient photovoltaic applications: a DFT approach. Chem Phys Lett 793:139459

    Article  CAS  Google Scholar 

  57. Akram SJ et al (2022) Impact of side-chain engineering on the A-π-D-π-A type SM-BF1 donor molecule for bulk heterojunction and their photovoltaic performance: a DFT approach. Sol Energy 240:38–56

    Article  CAS  Google Scholar 

  58. Waqas M, et al. (2022) Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. Journal of Molecular Graphics and Modelling, 108255

  59. Khan MI et al (2022) End-capped group modification on cyclopentadithiophene based non-fullerene small molecule acceptors for efficient organic solar cells; a DFT approach. J Mol Graph Model 113:108162

    Article  CAS  PubMed  Google Scholar 

  60. Ans M et al (2019) Designing indacenodithiophene based non-fullerene acceptors with a donor–acceptor combined bridge for organic solar cells. RSC Adv 9(7):3605–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jilani F et al (2020) Rational design of naphthalimide based small molecules non-fullerene acceptors for organic solar cells. Comput Theor Chem 1187:112916

    Article  CAS  Google Scholar 

  62. Farhat A et al (2020) Tuning the optoelectronic properties of Subphthalocyanine (SubPc) derivatives for photovoltaic applications. Opt Mater 107:110154

    Article  CAS  Google Scholar 

  63. Rashid EU, et al. (2022) Depicting the role of end-capped acceptors to amplify the photovoltaic properties of benzothiadiazole core-based molecules for high-performance organic solar cell applications. Comput Theor Chem 113669

  64. Naveed A et al (2022) Tuning the optoelectronic properties of benzodithiophene based donor materials and their photovoltaic applications. Mater Sci Semicond Process 137:106150

    Article  CAS  Google Scholar 

  65. Sharif A et al (2021) Tuning the optoelectronic properties of dibenzochrysene (DBC) based small molecules for organic solar cells. Mater Sci Semicond Process 127:105689

    Article  CAS  Google Scholar 

  66. Salim M et al (2022) Amplifying the photovoltaic properties of azaBODIPY core based small molecules by terminal acceptors modification for high performance organic solar cells: A DFT approach. Sol Energy 233:31–45

    Article  CAS  Google Scholar 

  67. Tajammal A, et al. (2022) Engineering of A2-D-A1-D-A2 type BT-dIDT based non-fullerene acceptors for effective Organic Solar Cells. Computational and Theoretical Chemistry 113666.

  68. Rasool A et al (2022) Synergistic engineering of end-capped acceptor and bridge on arylborane-arylamine macrocycles to boost the photovoltaic properties of organic solar cells. Opt Mater 123:111907

    Article  CAS  Google Scholar 

  69. Rafiq M et al (2022) End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. J Mol Liq 345:118138

    Article  CAS  Google Scholar 

  70. Ans M et al (2020) Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells. J Mol Liq 305:112829

    Article  CAS  Google Scholar 

  71. Blakesley JC, Neher D (2011) Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys Rev B 84(7):075210

    Article  CAS  Google Scholar 

  72. Azeem U et al (2021) Tuning of a A-A–D–A–A-Type Small Molecule with Benzodithiophene as a Central Core with Efficient Photovoltaic Properties for Organic Solar Cells. ACS Omega 6(43):28923–28935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rafiq M et al (2021) Tuning the optoelectronic properties of scaffolds by using variable central core unit and their photovoltaic applications. Chem Phys Lett 782:139018

    Article  CAS  Google Scholar 

  74. Zahid S et al (2021) Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. J Mol Model 27(9):1–14

    Article  CAS  Google Scholar 

  75. Banishoeib IVS, et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells.

  76. Vandewal K et al (2008) The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv Func Mater 18(14):2064–2070

    Article  CAS  Google Scholar 

  77. Koehler M, Santos M, Da Luz M (2006) Positional disorder enhancement of exciton dissociation at donor∕ acceptor interface. J Appl Phys 99(5):053702

    Article  CAS  Google Scholar 

  78. Yu J et al (2017) Bisalkylthio side chain manipulation on two-dimensional benzo [1, 2-b: 4, 5-b′] dithiophene copolymers with deep HOMO levels for efficient organic photovoltaics. Dyes Pigm 136:312–320

    Article  CAS  Google Scholar 

  79. Ma X et al (2018) Ternary nonfullerene polymer solar cells with efficiency> 13.7% by integrating the advantages of the materials and two binary cells. Energy Environ Sci 11(8):2134–2141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and technical support from Punjab Bio-energy Institute (PBI), University of Agriculture Faisalabad (UAF), Pakistan. We are also thankful to Dr. Khurshid Ayub, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus for additional resources.

Funding

Funding acquisition from Punjab Bio-energy Institute (PBI), University of Agriculture Faisalabad (UAF), Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Zeeshana Bibi: Investigation, Methodology, Writing original draft, Funding acquisition, Formal analysis, Data curation. Javed Iqbal: Conceptualization, Formal analysis. Rasheed Ahmad Khera: Data curation, Methodology. Muhammad Asgher: Data curation, Software.

Corresponding authors

Correspondence to Javed Iqbal or Rasheed Ahmad Khera.

Ethics declarations

Ethics approval

We approved all ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Associated information.

Supporting information (SI-1) includes cartesian coordinates of internally optimized geometries of all molecules (reference SQR, and architecture molecules SQRM1, SQRM2, SQRM3, SQRM4, SQRM5, SQRM6, SQRM7, and SQRM8 along the X, Y, and Z axes at CAMB3LYP/6-31G (d, p) functional level of density functional theory (DFT).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, Z., Iqbal, J., Khera, R.A. et al. Spirothienoquinoline-based acceptor molecular systems for organic solar cell applications: DFT investigation. J Mol Model 28, 244 (2022). https://doi.org/10.1007/s00894-022-05226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05226-4

Keywords

Navigation