Skip to main content
Log in

Ab-initio study of the electronic structure of LaF including spin–orbit coupling

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Spectroscopic investigation of lanthanum monofluoride molecule LaF is carried out by ab-initio methods and all the observed band systems are predicted through the fine structure of LaH. This structure consisted of 67 Ω(±) states is calculated by taking into account the spin–orbit coupling effect of lanthanum. Therefore, these Ω(±) states are degenerated from 33 low-lying 1,3Λ(±) states below 33,200 cm−1. The potential energy curves (PECs) of 1,3Λ(±) and Ω(±) states are displayed in the range of internuclear distance from 1.40 to 3.00 Å and their spectroscopic constants (\({R}_{e}\),\({T}_{e}\), \({\omega }_{e}\), \({\omega }_{e}{\chi }_{e}\)) are reported. Moreover, the permanent and the transition dipole moments are plotted as a function of internuclear distance. Furthermore, the composition of the Ω(±) state-wave functions in terms of Λ-S parent states is calculated at the equilibrium internuclear distance of the ground state. Furthermore, through calculating the splitting energy between the spin–orbit components of a 3Λ(±) state, Hund’s case of many states involved in the observed band systems is determined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barrow RF, Bastin MW, Moore DLG, Pott CJ (1967) Nature (London) 215:1072–1073

    Article  CAS  Google Scholar 

  2. Barrow R-F, Caunt AD, Downie A-R, Herman R, Rosen B (1951) Données spectroscopiques concernant les molécules diatomiques: Etabli par R.-F. Barrow, A.-D. Caunt, A.-R. Downie, A-R. Herman. Réd. générale : B. Rosen. Paris: Hermann & cie

  3. Huber KP, Herzberg GH. Constants of Diatomic Molecules. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. P.J. Linstrom and W.G. Mallard (Gaithersburg, MD: National Institute of Standards and Technology). https://webbook.nist.gov/cgi/cbook.cgi?Name=LaF&Units=SI&cES=on&cDI=on (Data prepared by Jean W. Gallagher and Russell D. Johnson, III)

  4. Schall H, Linton C, Field RW (1983) J Mol Spectrosc 100:437–448

    Article  CAS  Google Scholar 

  5. Simard B, James AM (1992) J Chem Phys 97:4669–4678

    Article  CAS  Google Scholar 

  6. Kaledin LA, McCord JE, Heaven MC (1994) J Opt Soc Am B 11:219–224

    Article  CAS  Google Scholar 

  7. Kaledin LA, Kaledin AL, Heaven MC (1997) J Mol Spectrosc 182:50–56

    Article  CAS  Google Scholar 

  8. Vergès J, Effantin C, D’Incan J, Bernard A, Shenyasvskaya EA (1999) J Mol Spectrosc 198:196–198

    Article  Google Scholar 

  9. Bernard A, Effantin C, D’Incan J, Vergès J (2000) J Mol Spectrosc 204:55–59

    Article  CAS  Google Scholar 

  10. Bernard A, Effantin C, D’Incan J, Vergès J (2000) J Mol Spectrosc 202:163–165

    Article  Google Scholar 

  11. Bernard A, Effantin C, Shenyavskaya EA, D’Incan J (2001) J Mol Spectrosc 207:211–215

    Article  CAS  Google Scholar 

  12. Bernard A, Effantin C, Chevillard J, D’Incan J (2002) J Mol Spectrosc 215:220–227. https://doi.org/10.1006/jmsp.2002.8618

    Article  CAS  Google Scholar 

  13. Schall H, Dulick M, Field RW (1987) J Chem Phys 87:2898

    Article  CAS  Google Scholar 

  14. Dolg M, Stoll H (1989) Theor Chim Acta 75:369

    Article  CAS  Google Scholar 

  15. Fahs H, Allouche AR, Korek M, Aubert-Frécon M (2002) J Chem Phys 117:3715. https://doi.org/10.1063/1.1493769

    Article  CAS  Google Scholar 

  16. Chen LH, Shang RCH (2003) Commun. Theor Phys 39(3):323–326

    CAS  Google Scholar 

  17. Moriyama H, Tatewaki H, Watanabe Y, Nakano H (2009) Int J Quantum Chem 109:1898–1904

    Article  CAS  Google Scholar 

  18. Assaf J, El Haj Hassan F, Nascimento ÉCM (2018) Comput. Theor Chem 1128:31

    Article  CAS  Google Scholar 

  19. Assaf J, Zeitoun S, Safa A, Nascimento ÉCM (2019) J Mol Struct 1178:458

    Article  CAS  Google Scholar 

  20. Hamade Y, Taher F, Monteil Y (2012) J Phys Chem 116:12123–12128

    Article  CAS  Google Scholar 

  21. Assaf J, Taher F, Magnier S (2017) J Quant Spectrosc Radiat Transf 189:421

    Article  CAS  Google Scholar 

  22. Assaf J, Taher F, Magnier S (2014) SAA 118:1129

    CAS  Google Scholar 

  23. Assaf J (2016) Étude théorique des molécules LuBr et LuI par les méthodes ab-initio [Doctoral thesis, The University of Lille]. Presses Académiques Francophones (ed), OmniScriptum GmbH & Co. KG

  24. Assaf J, Reaidi R, Assaf R (2020) Comput. Theor Chem 1187:112941. https://doi.org/10.1016/j.comptc.2020.112941

    Article  CAS  Google Scholar 

  25. Assaf J, Assaf R, Nascimento ECM (2021) Comput. Theor Chem 1203:113363. https://doi.org/10.1016/j.comptc.2021.113363

    Article  CAS  Google Scholar 

  26. Cao X, Dolg M (2001) J Chem Phys 115:7348

    Article  CAS  Google Scholar 

  27. Cao X, Dolg M (2002) J Molec Struct (Theochem) 581:139

    Article  CAS  Google Scholar 

  28. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  29. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Theor Chim Acta 77:291–306. https://doi.org/10.1007/bf01120130

    Article  CAS  Google Scholar 

  30. MOLPRO, version 2012.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others. http://www.molpro.net

  31. Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053

    Article  CAS  Google Scholar 

  32. Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259

    Article  CAS  Google Scholar 

  33. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803

    Article  CAS  Google Scholar 

  34. Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514

    Article  CAS  Google Scholar 

  35. Wigner E, Witmer EE (1928) J Appl Phys 51:859

    CAS  Google Scholar 

  36. Kramida A, Ralchenko Yu, Reader J, and NIST ASD Team (2021) NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd [2022, March 22]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Joumana Assaf. The first draft of the manuscript was written by Joumana Assaf and all authors commented on previous versions of the manuscript. Fouad El Haj Hassan read and approved the final manuscript.

Corresponding author

Correspondence to Joumana Assaf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assaf, J., Assaf, R. & Hassan, F.E.H. Ab-initio study of the electronic structure of LaF including spin–orbit coupling. J Mol Model 28, 170 (2022). https://doi.org/10.1007/s00894-022-05157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05157-0

Keywords

Navigation