Skip to main content
Log in

Identification of PRMT5 inhibitors with novel scaffold structures through virtual screening and biological evaluations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Protein arginine methyltransferase 5 (PRMT5), an important member in PRMT family, has been validated as a promising anticancer target. In this study, through the combination of virtual screening and biological experiments, we have identified two PRMT5 inhibitors with novel scaffold structures. Among them, compound Y2431 showed moderate activity with IC50 value of 10.09 μM and displayed good selectivity against other methyltransferases. The molecular docking analysis and molecular dynamics (MD) simulations suggested that the compound occupied the substrate-arginine binding site. Furthermore, Y2431 exhibited anti-proliferative activity to leukemia cells by inducing cell cycle arrest. Overall, the hit compound could provide a novel scaffold for further optimization of small-molecule PRMT5 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  Google Scholar 

  2. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585:2024–2031

    Article  Google Scholar 

  3. Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  Google Scholar 

  4. Hu H, Qian K, Ho MC, Zheng YG (2016) Small molecule inhibitors of protein arginine methyltransferases. Expert Opin Investig Drugs 25:335–358

    Article  CAS  Google Scholar 

  5. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24:9630–9645

    Article  CAS  Google Scholar 

  6. Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z et al (2010) Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci USA 107:19114–19119

    Article  CAS  Google Scholar 

  7. Andreu-Perez P, Esteve-Puig R, de Torre-Minguela C, Lopez-Fauqued M, Bech-Serra JJ, Tenbaum S et al (2011) Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 4:ra58-ra

    Article  Google Scholar 

  8. Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S et al (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28:3820–3831

    Article  CAS  Google Scholar 

  9. Kanda M, Shimizu D, Fujii T, Tanaka H, Shibata M, Iwata N et al (2016) Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int J Oncol 49:1195–1202

    Article  CAS  Google Scholar 

  10. Zhang B, Dong S, Zhu R, Hu C, Hou J, Li Y et al (2015) Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Oncotarget 6:22799–22811

    Article  Google Scholar 

  11. Tarighat S, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M et al (2016) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30:789–799

    Article  CAS  Google Scholar 

  12. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T et al (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109:17960–17965

    Article  CAS  Google Scholar 

  13. Smil D, Eram MS, Li F, Kennedy S, Szewczyk MM, Brown PJ et al (2015) Discovery of a dual PRMT5-PRMT7 inhibitor. ACS Med Chem Lett 6:408–412

    Article  CAS  Google Scholar 

  14. Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP et al (2018) LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 9:612–617

    Article  CAS  Google Scholar 

  15. Ye F, Zhang W, Ye X, Jin J, Lv Z, Luo C (2018) Identification of selective, cell active inhibitors of protein arginine methyltransferase 5 through structure-based virtual screening and biological assays. J Chem Inf Model 58:1066–1073

    Article  CAS  Google Scholar 

  16. Gerhart SV, Kellner WA, Thompson C, Pappalardi MB, Zhang XP, Montes de Oca R et al (2018) Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep 8:9711

    Article  Google Scholar 

  17. Ye Y, Zhang B, Mao R, Zhang C, Wang Y, Xing J et al (2017) Discovery and optimization of selective inhibitors of protein arginine methyltransferase 5 by docking-based virtual screening. Org Biomol Chem 15:3648–3661

    Article  CAS  Google Scholar 

  18. Alinari L, Mahasenan KV, Yan F, Karkhanis V, Chung JH, Smith EM et al (2015) Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 125:2530–2543

    Article  CAS  Google Scholar 

  19. Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014

    Article  CAS  Google Scholar 

  20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  21. Whitty A (2011) Growing PAINS in academic drug discovery. Future Med Chem 3:797–801

    Article  CAS  Google Scholar 

  22. Jin WY, Ma Y, Li WY, Li HL, Wang RL (2018) Scaffold-based novel SHP2 allosteric inhibitors design using receptor-Ligand pharmacophore model, virtual screening and molecular dynamics. Comput Biol Chem 73:179–188

    Article  CAS  Google Scholar 

  23. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pK( a ) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691

    Article  CAS  Google Scholar 

  24. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–49

    Article  CAS  Google Scholar 

  25. Zhang WY, Lu WC, Jiang H, Lv ZB, Xie YQ, Lian FL et al (2017) Discovery of alkyl bis(oxy)dibenzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Chem Biol Drug Des 90:1260–1270

    Article  CAS  Google Scholar 

  26. Mao R, Shao J, Zhu K, Zhang Y, Ding H, Zhang C et al (2017) Potent, Selective, and cell active protein arginine methyltransferase 5 (PRMT5) inhibitor developed by structure-based virtual screening and hit optimization. J Med Chem 60:6289–6304

    Article  CAS  Google Scholar 

  27. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  28. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  29. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  30. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–41

    Article  CAS  Google Scholar 

  31. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  32. Nayar D, Agarwal M, Chakravarty C (2011) Comparison of tetrahedral order, liquid state anomalies, and hydration behavior of mTIP3P and TIP4P water models. J Chem Theory Comput 7:3354–3367

    Article  CAS  Google Scholar 

  33. Roe DR, Cheatham TE 3rd (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  35. Miller BR 3rd, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Computation 8:3314–21

    Article  CAS  Google Scholar 

  36. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  37. Zhu K, Jiang CS, Hu J, Liu X, Yan X, Tao H et al (2018) Interaction assessments of the first S-adenosylmethionine competitive inhibitor and the essential interacting partner methylosome protein 50 with protein arginine methyltransferase 5 by combined computational methods. Biochem Biophys Res Commun 495:721–727

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (81803339 to J.J.) and Jiaxing Science and Technology Project (2018AY32002 to C.C.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Project design, manuscript editing were performed by Fei Ye. Material preparation, data collections, and results analysis were performed by Qian Zhang, Lun Zhang, Jia Jin, Chenxi Cao, Yaohua Fan, Xiaoguang Wang, Haofeng Hu and Xiaoqing Ye.

Corresponding authors

Correspondence to Chenxi Cao or Fei Ye.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, L., Jin, J. et al. Identification of PRMT5 inhibitors with novel scaffold structures through virtual screening and biological evaluations. J Mol Model 28, 184 (2022). https://doi.org/10.1007/s00894-022-05125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05125-8

Keywords

Navigation