Skip to main content
Log in

Robustness of hydrogen bonding in the construction of supramolecular architectures in protonated perchlorate salts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Five new multicomponent salts of perchloric acid with a series of substituted anilines and N-heterocyclic amines namely Diphenylaminium perchlorate (DPAPC) (1), 2, 5-dichloroanilinium perchlorate (25DAP) hydrate (2), 4-Methylanilinium perchlorate (4MAPC) (3), 4-diamino-6-methyl-1, 3, 5-triazin-1-ium hydrogen perchlorate (24DAMTHP) (4), and 8-hydroxyquinolinium hydrogen perchlorate (8HQP) (5) were prepared and structurally characterized. The entire complexes were subjected to FTIR and elemental analysis. A vast family of intermolecular contacts N–H…O, O–H…O, N–H…N, and C-H…O was observed, which are key ingredient in the generation of privileged supramolecular self-assemblies appeared as one-dimensional chain, two-dimensional ladder, and helix. Cambridge Structural Database (CSD) analysis of 52 hits revealed the perchloric acid display higher propensity of ladder architectures. Molecular stability of the complexes was studied by quantum chemical calculations using DFT/B3LYP method with 6-31G(d,p) basis set. Furthermore, their relative charge distributions were identified using molecular electrostatic potential map. The use of Hirshfeld surfaces in combination with fingerprint plots was visualized in order to study the closer contacts within the molecule. The relative contribution of the whole percentage of interactions associated is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Crystallographic data of the structure reported in this article have been deposited in the Cambridge Crystallographic Data Centre. The deposition numbers are CCDC-1409707–1,409,711. Copy of the data can be downloaded at free charge from CCDC website (www.ccdc.cam.ac.uk). Experimental and theoretical bond length and angles were tabulated in the Supplementary article.

Code availability

The calculations were performed using Gaussian 09 W and GaussView 5.0 and Hirshfeld surface analysis were done using Crystal Explorer.

References

  1. Aakeroy CB, Beatty AM (2001) Aust J Chem 54:409–421

    Article  CAS  Google Scholar 

  2. Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  3. Zhang J, Wu L, Fan Y (2003) J Mol Struct 660:119

    Article  CAS  Google Scholar 

  4. Jin S, Liu L, Wang D, Guo J (2011) J Mol Struct 1005:59

    Article  CAS  Google Scholar 

  5. Ballabh A, Trivedi DR, Dastidar P, Suresh E (2002) Cryst Eng Comm 4:1135

    Article  Google Scholar 

  6. Padmavathy R, Karthikeyan N, Sathya D, Jagan R, Mohan Kumar R, Sivakumar K (2016) RSC Adv 6:68468

    Article  CAS  Google Scholar 

  7. Sethuraman V, Stanley N, Thomas Muthiah P, Sheldrick WS, Winter M, Luger P, Weber M (2003) Cryst Growth Des 3:823

    Article  CAS  Google Scholar 

  8. Miao Du.; Zhi-Hui Zhang.; Xiao-Jun Zhao.; Hua Cai.; Cryst. Growth Des., 2006, 6, 1186.

  9. Krishnamohan Sharma CV (2002) Cryst Growth Des 2:465

    Article  Google Scholar 

  10. Padmavathy R, Karthikeyan N, Sathya D, Jagan R, Mohan Kumar R, Sivakumar K (2017) J Mol Str 1136:144

    Article  CAS  Google Scholar 

  11. Allen, FH. New J Chem 1999,25.

  12. Zi-Liang W, Lin- Heng W, Lin-Yu J, Jing Ping W, Chinese J (2007) Struct Chem 26(12):1423

    Google Scholar 

  13. Thakuria H, Borah BM, Pramanik A, Das G (2007) J Chem Crystallogr 37:807

    Article  CAS  Google Scholar 

  14. Saminathan K, Athimoolam S, Karthikeyan N, Sivakumar K (2018) J Mol Str 1171:127

    Article  CAS  Google Scholar 

  15. Reddy DS, Ovchinnikov YE, Shishkin OV, Struchkov YT, Desiraju GR (1996) J Am Chem Soc 118:4085

    Article  CAS  Google Scholar 

  16. Karthikeyan N, Sathya D, Padmavathy R, Sivakumar K (2017) Mater Res Inov 21:304

    Article  Google Scholar 

  17. Sethuraman V, Stanley N, Muthiah PT, Sheldrick WS, Winter M, Luger P, Weber M (2003) Crystal Growth Des 3:823

    Article  CAS  Google Scholar 

  18. Allen FH, Motherwell WDS, Raithby PR, Shieldsa GP, Taylora R (1999) New J Chem 25:34

    Google Scholar 

  19. Wong Man Shing, Gramlich Volker, Bosshard Christian, Gu¨nter Peter (1997) J Mater Chem 7(10):2021–2026

    Article  CAS  Google Scholar 

  20. Judeinstein P, Sanchez C (1996) J Mater Chem 6:511–525

    Article  CAS  Google Scholar 

  21. Abate A, Martí-Rujas J, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Cryst. Growth Des 11(9):4220–4226

    Article  CAS  Google Scholar 

  22. Diop T, Diop L, Diop CAK, Molloy KC, Kociok-Köhn G (2011) Acta Cryst E67:m1872–m1873

    Google Scholar 

  23. Custelcean R (2010) Chem Soc Rev 39:3675–3685

    Article  CAS  Google Scholar 

  24. Brown G M, Perchlorate BG, Springer, 2006 17–47.

  25. Vyazovkin S, Wigh CA (1999) Chem Mater 11:3386–3393

    Article  CAS  Google Scholar 

  26. Drozd M, Dudzic D (2013) Spectrochim Acta A 113:345–356

    Article  Google Scholar 

  27. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  28. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  29. MacDonald JC, Whitesides GM (1994) Chem Rev 94(8):2383–2420

    Article  CAS  Google Scholar 

  30. Janczaka J, Perpeatuob GJ (2008) Acta Cryst C64:o91–o94

    Google Scholar 

  31. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR (2004) Pharm Res 21(6):947–952

    Article  CAS  Google Scholar 

  32. Bhardwaj RM, Oswald I, Florence AJ (2012) Acta Cryst E68:o3377

    Google Scholar 

  33. Szczesniak HB, Patroniak V, Radecka-Paryzek W, Kubicki M (2009) Acta Cryst C65:o371–o373

    Google Scholar 

  34. Allen FH (2002) Acta Cryst B58:380–388

    Article  CAS  Google Scholar 

  35. Rybarczyk-Pirek AJ, Chęcińska L, Małecka M, Wojtulewski S (2013) Cryst Growth Des 13:3913–3924

    Article  CAS  Google Scholar 

  36. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. Cryst Engg Comm 11:19–32

    Article  CAS  Google Scholar 

  37. McKinnon JJ, Jayatilaka D, Spackman MA 2007 Chem Comm 3814–3816.

  38. Clausen HF, Chevallier MS, Spackman MA, Iversen BB (2010) New J Chem 34:193–199

    Article  CAS  Google Scholar 

  39. Spackman MA, McKinnon JJ (2002) Cryst Engg Comm 4(66):378–392

    Article  CAS  Google Scholar 

  40. Wolf SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackmann MA (2009) Crystal Explorer. University of Western Australia, Australia

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr., Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ 2009 Gaussian-09, Revision D.01, Gaussian Inc, Wallingford, CT

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank SAIF, IIT Madras for the Single crystal X-ray diffraction facility.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work, data interpretation, and article writing: DS, NK, RP; editing and discussion: RJ and KS; final review: RA.

Corresponding author

Correspondence to N. Karthikeyan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, D., Karthikeyan, N., Padmavathy, R. et al. Robustness of hydrogen bonding in the construction of supramolecular architectures in protonated perchlorate salts. J Mol Model 28, 74 (2022). https://doi.org/10.1007/s00894-022-05064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05064-4

Keywords

Navigation