Skip to main content
Log in

Prospecting the therapeutic edge of a novel compound (B12) over berberine in the selective targeting of Retinoid X Receptor in colon cancer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Retinoid X Receptor (RXR) is an attractive target in the treatment of colon cancer. Different therapeutic binders with high potency have been used to specifically target RXR. Among these compounds is a novel analogue of berberine, B12. We provided structural and molecular insights into the therapeutic activity properties of B12 relative to its parent compound, berberine, using force field estimations and thermodynamic calculations. Upon binding of B12 to RXR, the high instability elicited by RXR was markedly reduced; similar observation was seen in the berberine-bound RXR. However, our analysis revealed that B12 could have a more stabilizing effect on RXR when compared to berberine. Interestingly, the mechanistic behaviour of B12 in the active site of RXR opposed its impact on RXR protein. This disparity could be due to the bond formation and breaking elicited between B12/berberine and the active site residues. We observed that B12 and berberine could induce a disparate conformational change in regions Gly250-Asp258 located on the His-RXRα/LBD domain. Comparatively, the high agonistic and activation potential reported for B12 compared to berberine might be due to its superior binding affinity as evidenced in the thermodynamic estimations. The total affinity for B12 (−25.76 kcal/mol) was contributed by electrostatic interactions from Glu243 and Glu239. Also, Arg371, which plays a crucial role in the activity of RXR, formed a strong hydrogen bond with B12; however, a weak interaction was elicited between Arg371 and berberine. Taken together, our study has shown the RXRα activating potential of B12, and findings from this study could provide a framework in the future design of RXRα binders specifically tailored in the selective treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J. Clin. 57(1):43-66. https://doi.org/10.3322/canjclin.57.1.43

    Article  PubMed  Google Scholar 

  2. Hassan C et al (2007) Colon cancer prevention in Italy: cost-effectiveness analysis with CT colonography and endoscopy. Dig. liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 39(3):242-250. https://doi.org/10.1016/j.dld.2006.09.016

    Article  CAS  Google Scholar 

  3. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJL (2002) Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2:37. https://doi.org/10.1186/1471-2407-2-37

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6):394-424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  5. Dobre M et al (2015) KRAS gene mutations - prognostic factor in colorectal cancer? Rom. J. Morphol. Embryol. = Rev. Roum. Morphol. Embryol. 56(2 Suppl):671-678

    Google Scholar 

  6. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J. Clin. 65(1):5-29. https://doi.org/10.3322/caac.21254

    Article  PubMed  Google Scholar 

  7. Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J. Mol. Med. (Berl). 76(7):469–479. https://doi.org/10.1007/s001090050241

    Article  CAS  PubMed  Google Scholar 

  8. Simons SSJ, Edwards DP, Kumar R (2014) Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol. Endocrinol. 28(2):173–182. https://doi.org/10.1210/me.2013-1334

    Article  CAS  PubMed  Google Scholar 

  9. Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157(1):255–266. https://doi.org/10.1016/j.cell.2014.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83(6):841–850. https://doi.org/10.1016/0092-8674(95)90200-7

    Article  CAS  PubMed  Google Scholar 

  11. de Lera AR, Bourguet W, Altucci L, Gronemeyer H (2007) Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat. Rev. Drug Discov. 6(10):811–820. https://doi.org/10.1038/nrd2398

    Article  CAS  PubMed  Google Scholar 

  12. Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L (2004) Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 11 Suppl 2:S126–S143. https://doi.org/10.1038/sj.cdd.4401533

    Article  CAS  PubMed  Google Scholar 

  13. Yamazaki K et al (2007) Synergistic effects of RXR alpha and PPAR gamma ligands to inhibit growth in human colon cancer cells--phosphorylated RXR alpha is a critical target for colon cancer management. Gut 56(11):1557–1563. https://doi.org/10.1136/gut.2007.129858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milliken EL, Zhang X, Flask C, Duerk JL, MacDonald PN, Keri RA (2005) EB1089, a vitamin D receptor agonist, reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammary cancer. Cancer Lett. 229(2):205–215. https://doi.org/10.1016/j.canlet.2005.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beildeck ME, Gelmann EP, Byers SW (2010) Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp. Cell Res. 316(11):1763–1772. https://doi.org/10.1016/j.yexcr.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr. Rev. 26(7):898–915. https://doi.org/10.1210/er.2003-0034

    Article  CAS  PubMed  Google Scholar 

  17. Xiao J-H et al (2003) Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J. Biol. Chem. 278(32):29954–29962. https://doi.org/10.1074/jbc.M304761200

    Article  CAS  PubMed  Google Scholar 

  18. A. Cr. I. beta-catenin-Rxr. binding leading to the increased proteasomal degradation of beta-catenin and Rxr. Dillard and M. A. Lane (2008) Retinol increases beta-catenin-RXRalpha binding leading to the increased proteasomal degradation of beta-catenin and RXRalpha. Nutr. Cancer 60(1):97–108. https://doi.org/10.1080/01635580701586754

    Article  CAS  Google Scholar 

  19. Chang W, Chen L, Hatch GM (2015) Berberine as a therapy for type 2 diabetes and its complications: from mechanism of action to clinical studies. Biochem. Cell Biol. 93(5):479–486. https://doi.org/10.1139/bcb-2014-0107

    Article  CAS  PubMed  Google Scholar 

  20. Derosa G, Maffioli P, Cicero AFG (2012) Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert. Opin. Biol. Ther. 12(8):1113–1124. https://doi.org/10.1517/14712598.2012.704014

    Article  CAS  PubMed  Google Scholar 

  21. Liu D, Meng X, Wu D, Qiu Z, Luo H (2019) A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine. Front. Pharmacol. 10:9. https://doi.org/10.3389/fphar.2019.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z et al (2014) Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 5:5493. https://doi.org/10.1038/ncomms6493

    Article  CAS  PubMed  Google Scholar 

  23. Ruan H et al (2017) Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene 36(50):6906–6918. https://doi.org/10.1038/onc.2017.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem. Pharmacol. 84(10):1260–1267. https://doi.org/10.1016/j.bcp.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  25. Ortiz LMG, Lombardi P, Tillhon M, Scovassi AI (2014) Berberine, an epiphany against cancer. Molecules 19(8):12349–12367. https://doi.org/10.3390/molecules190812349

    Article  CAS  PubMed  Google Scholar 

  26. Gampe J, Montana VG, Lambert MH, Wisely GB, Milburn MV, Xu HE (2000) Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix. Genes Dev. 14(17):2229–2241. https://doi.org/10.1101/gad.802300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pérez Santín E et al (2009) Modulating retinoid X receptor with a series of (E)-3-[4-hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)phenyl]acrylic acids and their 4-alkoxy isomers. J. Med. Chem. 52(10):3150–3158. https://doi.org/10.1021/jm900096q

    Article  CAS  PubMed  Google Scholar 

  28. Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  29. Ertl P (2010) Molecular structure input on the web. J. Cheminform 2(1):1. https://doi.org/10.1186/1758-2946-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chitnis SS, Robertson APM, Burford N, Patrick BO, McDonald R, Ferguson MJ (2015) Bipyridine complexes of E3+ (E = P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations. Chem. Sci. 6(11):6545–6555. https://doi.org/10.1039/c5sc02423d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  32. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu B et al (2020) Structure-activity relationship study enables the discovery of a novel berberine analogue as the RXRα activator to inhibit colon cancer. J. Med. Chem. 63(11):5841–5855. https://doi.org/10.1021/acs.jmedchem.0c00088

    Article  CAS  PubMed  Google Scholar 

  34. Eswar N et al (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chapter 2:Unit 2.9. https://doi.org/10.1385/1-59259-890-0:831

  35. Trott O, Olson AJ (2010) Autodock vina: improving the speed and accuracy of docking. J. Comput. Chem. 31(2):455–461. https://doi.org/10.1002/jcc.21334.AutoDock

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pettersen EF et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  37. Olotu FA, Soliman MES (2018) From mutational inactivation to aberrant gain-of-function: unraveling the structural basis of mutant p53 oncogenic transition. J. Cell. Biochem. 119(3):2646–2652. https://doi.org/10.1002/jcb.26430

    Article  CAS  PubMed  Google Scholar 

  38. Abdullahi M, Olotu FA, Soliman ME (2018) Allosteric inhibition abrogates dysregulated LFA-1 activation: structural insight into mechanisms of diminished immunologic disease. Comput. Biol. Chem. 73:49–56. https://doi.org/10.1016/j.compbiolchem.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J. Comput. Chem. 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  40. Case DA et al (2018) Amber 18. Univ. California, San Fr

  41. Grest GS, Kremer K (May 1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, Gen. Phys. 33(5):3628–3631. https://doi.org/10.1103/physreva.33.3628

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8):3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  43. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  44. Roe DR, Cheatham III TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9(7):3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  45. Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software—software review. J. Chem. Inf. Model 54(5):1552. https://doi.org/10.1021/ci500161d

    Article  CAS  PubMed  Google Scholar 

  46. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51(1):69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  47. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kalra P, Das A, Jayaram B (2001) Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes. Appl. Biochem. Biotechnol. 96(1–3):93–108. https://doi.org/10.1385/abab:96:1-3:093

    Article  CAS  PubMed  Google Scholar 

  49. Lawal M, Olotu FA, Soliman MES (2018) Across the blood-brain barrier: neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput. Biol. Med. 98:168–177. https://doi.org/10.1016/j.compbiomed.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  50. David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084:193–226. https://doi.org/10.1007/978-1-62703-658-0_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bös F, Pleiss J (2009) Multiple molecular dynamics simulations of TEM β-lactamase: dynamics and water binding of the Ω-loop. Biophys. J. 97(9):2550–2558. https://doi.org/10.1016/j.bpj.2009.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chandel TI et al (2018) A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: an overview. Int. J. Biol. Macromol. 106:1115–1129. https://doi.org/10.1016/j.ijbiomac.2017.07.185

    Article  CAS  PubMed  Google Scholar 

  53. Linkuvienė V, Talibov VO, Danielson UH, Matulis D (2018) Introduction of intrinsic kinetics of protein-ligand interactions and their implications for drug design. J. Med. Chem. 61(6):2292–2302. https://doi.org/10.1021/acs.jmedchem.7b01408

    Article  CAS  PubMed  Google Scholar 

  54. Pace CN, Shirley BA (1996) Forces contributing proteins of proteins. Faseb 10(1):75–83

    Article  CAS  Google Scholar 

  55. Mbaye MN, Hou Q, Basu S, Teheux F, Pucci F, Rooman M (2019) A comprehensive computational study of amino acid interactions in membrane proteins. Sci. Rep 9(1):12043. https://doi.org/10.1038/s41598-019-48541-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors expressed their gratitude to the College of Health Sciences, University of KwaZulu-Natal for the support, while they also thank the Center for High-Performance Computing (CHPC, www.chpc.ac.za) Cape-Town, South Africa, for providing computational resources.

Author information

Authors and Affiliations

Authors

Contributions

T.S.: Designed the research article and wrote the manuscript. O.S.: Supervised the whole research article with necessary guidance. O.F.: Proofread and make necessary adjustment. M.S.: Research supervisor.

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Ethics approval

This research does not involve the use of animal samples.

Consent to participate

Not applicable.

Consent for publication

All authors consent to this publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subair, T.I., Soremekun, O.S., Olotu, F.A. et al. Prospecting the therapeutic edge of a novel compound (B12) over berberine in the selective targeting of Retinoid X Receptor in colon cancer. J Mol Model 27, 231 (2021). https://doi.org/10.1007/s00894-021-04848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04848-4

Keywords

Navigation