Skip to main content
Log in

Theoretical analysis of the structural and electronic properties of the interaction of boron nitride diamantane nanocrystal with the drug hydroxyurea as an anticancer drug

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The density functional theory calculations with hybrid B3LYP/6-31G(d,p) basis sets have been used to examine the structural and electronic properties of boron nitride (BN) diamantane interacted with the drug hydroxyurea (HU) as an anticancer drug. The findings have been shown that there is a decrease in the total energy after combining the drug with diamantane. The energy levels of HOMO and LUMO analyses indicate that the value of HOMO energy increased slightly, while the value of LUMO energy decreased significantly in these systems in the HU/BN diamantane. In addition, the decreasing of the energy gap between HOMO and LUMO confirms a strong bond between the drug hydroxyurea and BN diamantane. Finally, the drug’s stability and reactivity with BN diamantane were investigated by measuring chemical reaction characteristics such as chemical potential, electron affinity, global hardness, and electrophilicity index. As a result, the nanocrystal of BN diamantane can be considered a vector for the delivery of anticancer drugs within biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

The calculations have been carried out using Gaussian 09 and GaussView Version 6 provided by Gaussian, Inc.

References

  1. Raghu PK, Bansal KK, Thakor P et al (2020) Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals 13:167. https://doi.org/10.3390/ph13080167

  2. Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP et al (2020) Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 153:109–136. https://doi.org/10.1016/j.addr.2020.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z, Wu W, Lu Y (2020) What is the future for nanocrystal-based drug-delivery systems? Ther Deliv 11:225–229. https://doi.org/10.4155/tde-2020-0016

  4. Luther DC, Huang R, Jeon T et al (2020) Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 156:188–213. https://doi.org/10.1016/j.addr.2020.06.020

    Article  CAS  PubMed  Google Scholar 

  5.  Liu Y-C, Lin MT-Y, Ng AHC, et al (2020) Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals 13:351. https://doi.org/10.3390/ph13110351

  6. Rabiei M, Kashanian S, Samavati SS et al (2020) Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 102011. https://doi.org/10.1016/j.jddst.2020.102011

  7. Jappor HR, Jaber AS (2016) Electronic properties of CO and CO2 adsorbed silicene/graphene nanoribbons as a promising candidate for a metal-free catalyst and a gas sensor. Sens Lett 14:989–995. https://doi.org/10.1166/sl.2016.3722

    Article  Google Scholar 

  8. Jappor HR, Khudair SAM (2017) Electronic properties of adsorption of CO, CO2, NH3, NO, NO2 and SO2 on nitrogen doped graphene for gas sensor applications. Sens Lett 15:432–439. https://doi.org/10.1166/sl.2017.3819

    Article  Google Scholar 

  9. Jappor HR, Khudair SAM (2017) Al-doped graphene as a sensor for harmful gases (CO, CO2, NH3 , NO, NO2 and SO2). Sens Lett 15:1023–1030. https://doi.org/10.1166/sl.2017.39011023

    Article  Google Scholar 

  10. Abed Al-Abbas SS, Muhsin MK, Jappor HR (2019) Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattice Microst 135:106245. https://doi.org/10.1016/J.SPMI.2019.106245

    Article  CAS  Google Scholar 

  11. Jappor HR (2017) Electronic and structural properties of gas adsorbed graphene-silicene hybrid as a gas sensor. J Nanoelectron Optoelectron 12:742–747. https://doi.org/10.1166/jno.2017.2088

    Article  CAS  Google Scholar 

  12. Obeid MM, Shukur MM, Edrees SJ et al (2019) Electronic band structure, thermodynamics and optical characteristics of BeO1−xAx(A = S, Se, Te) alloys: insights from ab initio study. Chem Phys 526:110414. https://doi.org/10.1016/J.CHEMPHYS.2019.110414

    Article  CAS  Google Scholar 

  13. Obeid MM, Stampfl C, Bafekry A et al (2020) First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Phys Chem Chem Phys. https://doi.org/10.1039/d0cp02007a

  14. Almayyali AOM, Kadhim BB, Jappor HR (2020) Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Phys E Low-Dimens Syst Nanostruct 118:113866. https://doi.org/10.1016/j.physe.2019.113866

    Article  CAS  Google Scholar 

  15. Almayyali AOM, Kadhim BB, Jappor HR (2020) Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem Phys 532:110679. https://doi.org/10.1016/j.chemphys.2020.110679

    Article  CAS  Google Scholar 

  16. Muhsen Almayyali AO, Muhsen HO, Merdan M et al (2021) Two-dimensional ZnI2 monolayer as a photocatalyst for water splitting and improvement its electronic and optical properties by strains. Phys E Low-Dimens Syst Nanostruct 126. https://doi.org/10.1016/j.physe.2020.114487

  17. Hien ND, Cuong NQ, Bui LM et al (2019) First principles study of single-layer SnSe2 under biaxial strain and electric field: modulation of electronic properties. Phys E Low-Dimens Syst Nanostruct 111:201–205. https://doi.org/10.1016/j.physe.2019.03.025

    Article  CAS  Google Scholar 

  18. Saikia N, Deka RC (2014) Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes. New J Chem 38:1116–1128

    Article  CAS  Google Scholar 

  19. Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989

    Article  CAS  Google Scholar 

  20. Li J, Zhu J-J (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138:2506–2515

    Article  CAS  Google Scholar 

  21. Shayan K, Nowroozi A (2018) Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Appl Surf Sci 428:500–513. https://doi.org/10.1016/j.apsusc.2017.09.121

    Article  CAS  Google Scholar 

  22. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science (80- ) 293:1289–1292

    Article  CAS  Google Scholar 

  23. Hong R, Fischer NO, Verma A et al (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126:739–743

    Article  CAS  Google Scholar 

  24. Rahman HS, Othman HH, Hammadi NI et al (2020) Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomedicine 15:2439–2483. https://doi.org/10.2147/IJN.S227805

  25. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  26. Singh A, Sinsinbar G, Choudhary M et al (2013) Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors Actuators B Chem 185:675–684

    Article  CAS  Google Scholar 

  27. Clemens DL, Lee B-Y, Xue M et al (2012) Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 56:2535–2545

    Article  CAS  Google Scholar 

  28. Shete G, Jain H, Punj D et al (2014) Stabilizers used in nanocrystal based drug delivery systems. J Excipients Food Chem 5(4):184–209

  29. Couvreur P, Barratt G, Fattal E, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10

  30. Storm G, Wilms HP, Crommelin DJA (1991) Liposomes and biotherapeutics. Biotherapy 3:25–42

    Article  CAS  Google Scholar 

  31. Crommelin DJA, Storm G (2003) Liposomes: from the bench to the bed. J Liposome Res 13:33–36

    Article  Google Scholar 

  32. H Muller R, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. Curr Drug Discov Technol 8:207–227

    Article  Google Scholar 

  33. Maung K, Mishra RK, Roy I et al (2011) Thermal stability of cryomilled nanocrystalline aluminum containing diamantane nanoparticles. J Mater Sci 46:6932–6940

    Article  CAS  Google Scholar 

  34. Salim FM (2019) Structural and electronic properties of GaBN — diamantane nanocrystal 16:319–323. https://doi.org/10.1166/jctn.2019.7952

  35. Fokina NA, Tkachenko BA, Dahl JEP et al (2012) Synthesis of diamondoid carboxylic acids. Synthesis-Stuttgart 44:259–264

    Article  CAS  Google Scholar 

  36. Tran P, Eun S, Dong L et al (2019) Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig. https://doi.org/10.1007/s40005-019-00459-7

  37. Yan L, Shen J, Wang J et al (2020) Nanoparticle-based drug delivery system : a patient-friendly chemotherapy for oncology 1–12. https://doi.org/10.1177/1559325820936161

  38. Akbari A, Akbarzadeh A, Tehrani MR et al (2020) Development and characterization of nanoliposomal hydroxyurea against BT-474 breast cancer cells. 10:39–45. https://doi.org/10.15171/jcvtr.2015.24

  39. Guo J, Bourre L, Soden DM et al (2011) Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 29:402–417

    Article  CAS  Google Scholar 

  40. Chivere VT, Kondiah PPD, Choonara YE, Pillay V (2020) Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers 12:522. https://doi.org/10.3390/cancers12020522

  41. Akbari A, Akbarzadeh A, Tehrani MR et al (2020) Preparation and evaluation of a liposome drug delivery system in cancer treatment in vitro. J Nanostruct 10:140–147. https://doi.org/10.22052/JNS.2020.01.015

    Article  CAS  Google Scholar 

  42. Alberts NM, Badawy SM, Hodges J, Estepp JH (2020) Development of the InCharge Health mobile app to improve adherence to hydroxyurea in patients with sickle cell disease : user-centered design approach corresponding author 8. https://doi.org/10.2196/14884

  43. Alavi SE, Esfahani MKM, Alavi F et al (2013) Drug delivery of hydroxyurea to breast cancer using liposomes. Indian J Clin Biochem 28:299–302

    Article  CAS  Google Scholar 

  44. Hesabi M, Behjatmanesh-Ardakani R (2018) DFT study of N-hydroxyurea adsorption behavior onto pristine and iron-doped single-walled carbon nanotube. Phys Chem Res 6:115–132. https://doi.org/10.22036/pcr.2017.96386.1411

    Article  CAS  Google Scholar 

  45. Silva BP, Lemes RPG, Zanatta G et al (2019) Solid state properties of hydroxyurea: optical absorption measurement and DFT calculations. J Appl Phys 125. https://doi.org/10.1063/1.5068773

  46. Frisch M, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

  47. Beheshtian J, Peyghan AA, Bagheri Z (2013) Carbon nanotube functionalization with carboxylic derivatives: a DFT study. J Mol Model 19:391–396

    Article  CAS  Google Scholar 

  48. Peyghan AA, Soltani A, Pahlevani AA et al (2013) A first-principles study of the adsorption behavior of CO on Al-and Ga-doped single-walled BN nanotubes. Appl Surf Sci 270:25–32

    Article  CAS  Google Scholar 

  49. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2013) Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl Surf Sci 264:699–706

    Article  CAS  Google Scholar 

  50. Noei M, Ebrahimikia M, Saghapour Y et al (2015) Removal of ethyl acetylene toxic gas from environmental systems using AlN nanotube. J Nanostruct Chem 5:213–217

    Article  CAS  Google Scholar 

  51. Beheshtian J, Peyghan AA, Bagheri Z (2013) Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J Mol Model 19:2197–2203

    Article  CAS  Google Scholar 

  52. Beheshtian J, Peyghan AA, Bagheri Z (2013) Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struct Chem 24:165–170

    Article  CAS  Google Scholar 

  53. Nagarajan V, Chandiramouli R (2014) TeO2 nanostructures as a NO2 sensor: DFT investigation. Comput Theor Chem 1049:20–27

    Article  CAS  Google Scholar 

  54. Khodam M, Bagheri Z, Bodaghi A (2017) Application of C 30 B 15 N 15 heterofullerene in the isoniazid drug delivery : DFT studies. Phys E Low-Dimens Syst Nanostruct 89:72–76. https://doi.org/10.1016/j.physe.2017.02.009

    Article  CAS  Google Scholar 

  55. Al Shaabani YA, Kadhim BB, Jasim FH (2016) Structural and electronic properties of theophylline-InP diamantane drug carrier. Am Sci Res J Eng Technol Sci 19:130–141

  56. Bouzzine SM, Salgado-Morán G, Hamidi M et al (2015) DFT study of polythiophene energy band gap and substitution effects. J Chem 2015. https://doi.org/10.1155/2015/296386

  57. Jappor HR, Saleh ZA, Abdulsattar MA (2012) Simulation of electronic structure of aluminum phosphide nanocrystals using ab initio large unit cell method. Adv Mater Sci Eng 2012:1–6. https://doi.org/10.1155/2012/180679

    Article  CAS  Google Scholar 

  58. Zhan C, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital. Energies 4184–4195

  59. Parr RG, Szentpaly L v, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  60. Kadhim BB, Muhsen HO (2017) Structural and electronic properties of SWGaPNT drug carrier. Nanosci Nanotechnol 7:9–13

    CAS  Google Scholar 

  61. Muhsen HO, Kadhim BB, Almayyali AOM (2017) Electronic properties of InPNT drug carrier. J Chem Pharm Sci 10:1414–1418

  62. Kadhim BB (2019) Technological characteristics of Ga 4 in 4 B 4 P 12 nanotube for drugs carrier. Energy Procedia 157:541–550. https://doi.org/10.1016/j.egypro.2018.11.218

    Article  CAS  Google Scholar 

  63. Islam N, Ghosh DC (2012) On the electrophilic character of molecules through its relation with electronegativity and chemical hardness. Int J Mol Sci 13:2160–2175. https://doi.org/10.3390/ijms13022160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson III RD (2013) NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 16a http://cccbdb.nist.gov/. Accessed 13 Mar 2015

  65. Destro R, Merati F (1995) Bond lengths, and beyond. Acta Crystallogr Sect B Struct Sci 51:559–570. https://doi.org/10.1107/S0108768195005088

    Article  Google Scholar 

  66. Ciofini I, Adamo C, Chermette H (2005) Effect of self-interaction error in the evaluation of the bond length alternation in trans-polyacetylene using density-functional theory. J Chem Phys 123:121102. https://doi.org/10.1063/1.2047447

    Article  CAS  PubMed  Google Scholar 

  67. Vuckovic S, Burke K (2020) Quantifying and understanding errors in molecular geometries. J Phys Chem Lett 11:9957–9964. https://doi.org/10.1021/acs.jpclett.0c03034

  68. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646. https://doi.org/10.1063/1.473863

    Article  CAS  Google Scholar 

  69. Kadhim BB, Al-Rubaiee AA, Matrood MT (2017) Structural and electronic properties of InGaP nanocrystal diamantane drug carrier. Am J Mater Sci 7:12–17. https://doi.org/10.5923/j.materials.20170701.02

    Article  Google Scholar 

  70. Jappor HR (2011) Band-structure calculations of GaAs within semiempirical large unit cell method. Eur J Sci Res 59:264–275

    Google Scholar 

  71. Abdulsattar MA, Kadhim BB, Jawad HM (2015) Electronic, structural and vibrational properties of GaP diamondoids and nanocrystals: a density functional theory study. Nanomater Nanotechnol 5:1–10. https://doi.org/10.5772/60577

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

There were equal contributions of the authors to the completion of this work.

Corresponding author

Correspondence to Ali Obies Muhsen Almayyali.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained fromall participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhsen, H.O., Almayyali, A.O.M., Al-Mamoori, A.Y. et al. Theoretical analysis of the structural and electronic properties of the interaction of boron nitride diamantane nanocrystal with the drug hydroxyurea as an anticancer drug. J Mol Model 27, 90 (2021). https://doi.org/10.1007/s00894-021-04711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04711-6

Keywords

Navigation