Skip to main content
Log in

Atomistic liquid crystalline structures of discotic bent-core-like mesogens formed by hydrogen bonding and interchain interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Integrated atomistic and molecular dynamic simulations are used to characterize the role hydrogen bonding and interchain interactions on structures and phase transitions of novel bent-core-like mesogenic materials that exhibit new self-assembly features, attractive to the development of functional materials. Multi-step simulations were carried out to model phase transitions and various spectra of two complex mesogenic materials formed from acid functionalized azo compounds, 4-[2,3,4-tri(octyloxy)phenylazo] benzoic acid and 4-[2,3,4- tri(heptyloxy)phenylazo] benzoic acid. The simulations contain three consecutive steps, involving molecular quantum chemistry, molecular crystal packing, and super cell molecular dynamics calculations. These two mesogens are supposed to form phasmidic molecular conformers. However, simulations point to the formation of complex discotic bent-core-like liquid crystals with tetramer mesogenic assemblies, in very good agreement with experimental observations. The wide range agreements between simulations and experimental results include transitions of crystal structures to columnar and uniaxial nematic phases, x-ray diffraction patterns of columnar phases, the structure of the two-dimensional complex bent-core-like tetramers, molecular Raman spectra, Raman depolarization spectra, and order parameters of nematic phases. The multi-step simulation methodology and its results shed light on this unique behaviour of plasmids with flexible side chains for simulation design of novel bent-core-like mesogenic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pelzl G, Hauser A (1991) Birefringence and phase transitions in liquid crystals. Phase Transit 37:33–62

    Article  CAS  Google Scholar 

  2. Woodgate GJ, Harrold J (2006) Key design issues for autostereoscopic 2-D/3-D displays. J Soc Inf Disp 14:421–426

    Article  Google Scholar 

  3. Horiuchi N (2013) Photonic crystals: bridging the visible. Nat Photonics 7:767–767

    Article  CAS  Google Scholar 

  4. Kim B-G, Jeong EJ, Chung JW, Seo S, Koo B, Kim J (2013) A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nat Mater 12:659–664

    Article  CAS  Google Scholar 

  5. Li Q (2012) Liquid crystals beyond displays: chemistry, physics, and applications. John Wiley & Sons, Inc.

  6. Lavrentovich OD (2011) Liquid crystals, photonic crystals, metamaterials, and transformation optics. Proc Natl Acad Sci 108:5143–5144

    Article  CAS  Google Scholar 

  7. Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E et al (2015) A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat Commun 6:6013

    Article  CAS  Google Scholar 

  8. Gupta M, Pal SK (2016) Triphenylene-based room-temperature discotic liquid crystals: a new class of blue-light-emitting materials with long-range columnar self-assembly. Langmuir 32:1120–1126

    Article  CAS  Google Scholar 

  9. Bisoyi HK, Kumar S (2010) Discotic nematic liquid crystals: science and technology. Chem Soc Rev 39:264–285

    Article  CAS  Google Scholar 

  10. Kumar S (2014) Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater 6:e82

    Article  CAS  Google Scholar 

  11. Ruiz C, Pandey UK, Termine R, García-Frutos EM, López-Espejo G, Ortiz RP et al (2016) Mobility versus alignment of a semiconducting π-extended discotic liquid-crystalline triindole. ACS Appl Mater Interfaces 8:26964–26971

    Article  CAS  Google Scholar 

  12. Bisoyi HK, Li Q (2016) Discotic liquid crystals for self-organizing photovoltaics. In: Li Q (ed) Nanomaterials for sustainable energy. Springer International Publishing, Cham, pp 215–252

    Chapter  Google Scholar 

  13. Iino H, Usui T, Hanna J-i (2015) Liquid crystals for organic thin-film transistors. Nat Commun 6:6828

    Article  CAS  Google Scholar 

  14. Jeong SY (2011) Liquid crystalline behavior of mesogens formed by anomalous hydrogen bonding. Doctor of Philosophy, Liquid Crystal Institute, Doctoral dissertation, Kent State University

  15. Prasad V, Kang S-W, Varshney SK, Nagaveni NG (2010) Self-assembly of azo molecules to mesogenic phasmid-like materials through inter-molecular hydrogen bonding. Liq Cryst 37:121–128

    Article  CAS  Google Scholar 

  16. Porada JH, Blunk D (2010) Phasmidic indigoid liquid crystals. J Mater Chem 20:2956–2958

    Article  CAS  Google Scholar 

  17. Gordon MS, Schmidt MW (2005) Chapter 41 - Advances in electronic structure theory: GAMESS a decade later A2 - Dykstra, Clifford E. In: Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  18. Holden JR, Du Z, Ammon HL (1993) Prediction of possible crystal structures for C-, H-, N-, O-, and F-containing organic compounds. J Comput Chem 14:422–437

    Article  CAS  Google Scholar 

  19. Ammon HL, Du Z, Holden JR, Paquette LA (1994) Structure of 1,1,5,5-tetranitro- [4]peristylane. Structure solution from molecular packing analysis. Acta Crystallographica Section B Struct Sci 50:216–220

    Article  Google Scholar 

  20. Frauenheim T, Seifert G, Elsterner M, Hajnal Z, Jungnickel G, Porezag D et al (2000) A self-consistent charge density-functional based tight-binding method for predictive materials simulations in Physics, Chemistry and Biology. Phys Status Solidi B 217:41–62

    Article  CAS  Google Scholar 

  21. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  22. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  23. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  24. Liu J, Guan R, Dong X, Dong Y (2018) Molecular properties of a bent-core nematic liquid crystal A131 by multi-level theory simulations. Mol Simul 44:1539–1543

    Article  CAS  Google Scholar 

  25. Hang Hu, Rey Alejandro D (2017) Multi-step modeling of liquid crystals using ab initio molecular packing and hybrid quantum mechanics/molecular mechanics simulations. J Theor Comput Chem 16:1750012

  26. Wilson MR (2007) Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev 36:1881–1888

    Article  CAS  Google Scholar 

  27. Stafström S, Fagerström J (1994) Effects of interchain interactions on the localization of doping induced defects in quasi one-dimensional systems. Molecular crystals and liquid crystals science and technology. Section A. Mol Cryst Liq Cryst 256:209–216

  28. Nguyen T-Q, Martini IB, Liu J, Schwartz BJ (2000) Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton–exciton annihilation and aggregation in MEH−PPV films. J Phys Chem B 104:237–255

    Article  CAS  Google Scholar 

  29. Southern CD, Gleeson HF (2007) Using the full Raman depolarisation in the determination of the order parameters in liquid crystal systems. The European Physical Journal E 24:119–127

    Article  CAS  Google Scholar 

  30. Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J et al (2015) Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17:31371–31396

    Article  CAS  Google Scholar 

  31. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F et al (2006) octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi B 243:2465–2488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wang, M., He, Q. et al. Atomistic liquid crystalline structures of discotic bent-core-like mesogens formed by hydrogen bonding and interchain interactions. J Mol Model 26, 308 (2020). https://doi.org/10.1007/s00894-020-04561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04561-8

Keywords

Navigation