Skip to main content

Advertisement

Log in

Molecular polarizabilities of some energetic compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The dependence of sensitivity of an explosive on its molecular structure may be mainly attributed to the molecular deformability, which can be expressed by some characteristic parameters, resonance energy for aromatic an explosive, strain energy for a strained-ring or strained-cage explosive, large π-π separation energy for a large π-π linked-explosive, bond rotational energy barriers of C–NO2, N–NO2, O–NO2 for C–NO2, N–NO2, O–NO2 bond-based explosives, and so on. Molecular polarizability of an explosive is also an important molecular deformability index, which can be effectively used to compare impact sensitivities of explosive’s isomers, isoelectronic species, and similar structures. Interestingly, comparing the molecular polarizabilities under external electric fields with different energy levels of isomeric N20(Ih) and N20(D3d) clusters and the Mo2N20 and Re2N20 complex compounds, it is found that there are different energy thresholds of significant molecular expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Politzer P, Murray JS (2016). Prop. Explos. Pyrotech 41:414–425

  2. Tan B, Peng R, Long X, Li H, Jin B, Chu S (2012). J. Mol. Model. 18:583–589

    Article  CAS  PubMed  Google Scholar 

  3. Tan B, Huang M, Huang H, Long X, Li J, Nie F, Huang J (2013). Prop. Explos. Pyrotech 38:372–378

  4. Tan B, Huang M, Long X, Li J, Yuan X, Xu R (2014). Polyhedron 79:124–128

    Article  CAS  Google Scholar 

  5. Tan B, Huang M, Long X, Li J, Yuan X, Xu R (2015). Int. J. Quantum Chem. 115:84–89

    Article  CAS  Google Scholar 

  6. Tan B, Long X, Li J (2012). Comput. Theor. Chem. 993:66–72

    Article  CAS  Google Scholar 

  7. Tan B, Li H, Huang H, Han Y, Li J, Li M, Long X (2019). Chem. Phys. 520:81–87

    Article  CAS  Google Scholar 

  8. Tan B, Long X, Li J, Nie F, Huang J (2012). J. Mol. Model. 18:5127–5132

    Article  CAS  PubMed  Google Scholar 

  9. Tan B, Huang M, Li J, Long X (2016). Chin. Energ. Mater 24:10–18

    CAS  Google Scholar 

  10. Liu FC (1998). Chin. J. Light Scatt. 10:168–171

    Google Scholar 

  11. Ren FD, Cao DL, Shi WJ, You M (2017). RSC Adv. 7:47063–47072

    Article  CAS  Google Scholar 

  12. Wei Y, Wang XQ, Wang X, Tao ZQ, Cui YQ, Yang ML (2016). RSC Adv. 6:24712–24718

    Article  CAS  Google Scholar 

  13. Liu Y, Ma Y, Yu T, Lai W, Guo W, Ge Z, Ma Z (2018). J. Phys. Chem. A 122:2129–2134

    Article  CAS  PubMed  Google Scholar 

  14. Zhang G (1990). J. High Press. Phys. 4:161–166

    Google Scholar 

  15. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010). J. Mol. Model. 16:895–901

    Article  PubMed  Google Scholar 

  16. Zhao K (2008) Dielectric spectroscopy methods and their applications1st edn. China Chemical Industry Press, Beijing

    Google Scholar 

  17. Tan B, Tan K, Li H, Yu W, Han Y, Li M, Long X (2018). Polyhedron 156:54–57

    Article  CAS  Google Scholar 

  18. Miller KJ (1990). J. Am. Soc. 112:8533–8542

    Article  CAS  Google Scholar 

  19. Jin P, Brinck T, Murray JS, Politzer P (2003). Int. J. Quantum Chem. 95:632–637

    Article  CAS  Google Scholar 

  20. Pandey PKK, Santry DP (1980). J. Chem. Phys. 73:2899–2901

    Article  CAS  Google Scholar 

  21. Cohen MJ, Willetts A, Amos RD, Handy NC (1994). J. Chem. Phys. 100:4467–4476

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996). Phys. Rev. Lett. 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  23. Amado C, Barone V (1999). J. Chem. Phys. 110:6158–6169

    Article  Google Scholar 

  24. Dunning Jr TH (1989). J. Chem. Phys. 90:1007–1023

    Article  CAS  Google Scholar 

  25. Kendall RA, Dunning Jr TH, Harrison RJ (1992). J. Chem. Phys. 96:6796–6806

    Article  CAS  Google Scholar 

  26. Cohen HD, Roothaan CCJ (1965). J. Chem. Phys. 43:S34–S39

    Article  CAS  Google Scholar 

  27. Calaminici P, Jug K, Köster AM (1998). J. Chem. Phys. 109:7756

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas CO, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  29. Politzer P, Murray JS, Bulat FA (2010). J. Mol. Model. 16:1731–1742

    Article  CAS  PubMed  Google Scholar 

  30. Lu T, Chen FJ (2012). J. Comput. Chem. 33:580–592

    Article  PubMed  Google Scholar 

  31. Wheeler SE, Houk KN, Schleyer PR, Allen WD (2009). J. Am. Chem. Soc. 131:2547–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Møller C, Plesset MS (1934). Phys. Rev. 46:618

    Article  Google Scholar 

  33. Inagaki S (2009) Orbitals in inorganic chemistry: metal ring and clusters, hydronitrogens and heterocycles. Top. Curr. Chem. 289:293–315

    Article  CAS  Google Scholar 

  34. Gimarc BM, Zhao M (1996). Inorg. Chem. 35:3289–3297

    Article  CAS  PubMed  Google Scholar 

  35. Meyer R, Köhler J, Homburg A (2015) Explosives7th edn. WILEY-VCH VerlagGmbH & Co. KGaA, Weinheim

    Google Scholar 

  36. Koch EC, Klapötke TM (2012). Prop. Explos. Pyrotech 37:335–344

  37. Zhang C (2009). J. Hazard. Mater. 161:21–28

    Article  CAS  PubMed  Google Scholar 

  38. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials, ch 27. Kluwer, Dordrecht, pp 605–639

    Chapter  Google Scholar 

  39. Sikder AK, Maddala G, Agrawal JP, Singh H (2001). J. Hazard. Mater. A 84:1–26

    Article  CAS  Google Scholar 

  40. Л. И. ХМеЛъНИЦКИЙ, С. С. НоВИКОВ, Т. И. ГоЦоВИКоВа. (2013) Chemistry of Furazan (Russian edition), translated into Chinese by Yuanmjie Shu and Bozhou Wang, Chengdu Times Press, Chengdu, Chapter 1, pp 1–57

  41. Tan B, Huang H, Huang M, Long X, Li J, Yuan X, Xu R (2014). J. Fluor. Chem. 158:29–3730

    Article  CAS  Google Scholar 

  42. Liddle ST (2015) Molecular metal–metal bonds-compounds, synthesis, properties. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  43. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms. Springer Science and Business Media, Inc., Berlin

    Book  Google Scholar 

  44. Hay PJ, Wadt WR (1985). J. Chem. Phys. 82:270–283

    Article  CAS  Google Scholar 

  45. Wadt WR, Hay PJ (1985). J. Chem. Phys. 82:284–298

    Article  CAS  Google Scholar 

  46. Hay PJ, Wadt WR (1985). J. Chem. Phys. 82:299–310

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge financial support from National Natural Science Foundation of China (11372289) and the Innovation Project of Development Foundations Supported by China Academy Engineering Physics (cx2019009). Some computations were performed at the Institute of Computational Science, CAEP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Huang or Xinping Long.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Chai, C., Tan, K. et al. Molecular polarizabilities of some energetic compounds. J Mol Model 27, 51 (2021). https://doi.org/10.1007/s00894-020-04540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04540-z

Keywords

Navigation