Skip to main content
Log in

Comparative modeling of improved synthesis of energetic dinitrobenzofuroxan (DNBF) derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical theoretical computation was performed on gaseous molecular reaction systems to simulate parallel synthesis of energetic primary explosive precursor 4,6-dinitrobenzofuroxan (4,6-DNBF) and its isomeric derivatives. Related polarized continuum model (PCM) and Materials Studio (MS/forcite) energies were collected via kinetic rate and thermodynamic equilibrium analyses, enabling comparison of and suggestions as to suitable reaction conditions (reaction temperature, reagent concentration, mixed acid ratio) together with feasible pathways to obtain a high production yield of the research target. In summary, at a low reaction temperature of 278 K, 1.0 M 4-nitrobenzofuroxan (or 5,6-nitrobenzofuroxan) could be nitrated using concentrated nitric acid/sulfuric acid at a 1 to 2 volume ratio to efficiently and rapidly produce 4,6-dinitro-benzofuroxan (or 5,6-dinitrobenzofuroxan), in agreement with the experimental results reported in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fronabarger JW, Williams MD, Sanborn WB, Parrish DA, Bichay M (2011). Propel Explo Pyrotech 36(5):459

    Article  CAS  Google Scholar 

  2. Norris, W. P., US 4529801, 1985

    Google Scholar 

  3. Fronabarger, J. W.; Sitzman, M. E., US 7271267B1, 2007

    Google Scholar 

  4. Ou, J., X. R., Ordnance, 2015, 7,154

  5. Spear RJ, Norris WP (1983). Propel Explo Pyrotech 8(3):85

    Article  CAS  Google Scholar 

  6. Wang NX, Li JS (1995). Hecheng Huasue 3(3):260

    CAS  Google Scholar 

  7. Wang NX, Li JS, Zhang LX (1995). Hecheng Huasue 3(4):309

    CAS  Google Scholar 

  8. Ren ZQ, Yu TY, Xu BY (1995). Energe Mater 3(4):7

    CAS  Google Scholar 

  9. Zhang TL, Zhao JT (1996). Jiangsu Chem Indust 24(4):12

    CAS  Google Scholar 

  10. Zhou HP, Dong HS, Hao Y (2003). Energe Mater 11(4):236

    CAS  Google Scholar 

  11. Nemeikait A, Sarlauskas J, Misevicien L, Anusevicius Z, Marozien A, Cenas N (2004). Acta Bio Polonica 51(4):1081

    Google Scholar 

  12. Li ZX, Tang SQ (2006). China J Energe Mater 14(1):77

    Google Scholar 

  13. Sarlauskas J, Anuseviciusi Z, Misiunas A (2012). Central Europ J Energ Mater 9(4):365

    CAS  Google Scholar 

  14. Bowden PR, Tappan BC, Schmitt MM, Lebrun RW, Shorty M, Leonard PW, Lichthardt JP, Francois EG, Hill LG (2018). AIP Confer Proc 1979:100005–100001

    Article  CAS  Google Scholar 

  15. Goumont R, Sebban M, Marrot J, Terrier F (2004). Arkovic 3:85

    Google Scholar 

  16. Asghar BH (2019). Arab J Chem 12(8):2476

    Article  CAS  Google Scholar 

  17. Li YF, Zhang TL, Zhang JG (2004). Energe Mater 12(4):203

    CAS  Google Scholar 

  18. Norris WP (1984) Naval Weapons Center technic report. NWC TP:6522

  19. Li ZX, Tang SQ, Ou YX, Chen BR (2002). Energe Mater 10(2):59

    Google Scholar 

  20. Carvalho PSD, Marostica M, Gambero A, Pedrazzoli Jr J (2010). Eur J Med Chem 45:2489

    Article  CAS  Google Scholar 

  21. Chugunova E, Akylbekov N, Shakirova L, Dobrynin A, Syakaev V, Latypov S, Bukharov S, Burilov A (2016). Tetrahedron 7:6415

    Article  CAS  Google Scholar 

  22. Hou CY, Chen XF, Liu JY, Lai WP, Wang BZ (2010). Chin J Chem Phys 23(4):387

    Article  CAS  Google Scholar 

  23. Simulation software, Accelrys website. (http://accelrys.com/products/collaborative-science/biovia-materials-studio/)

  24. Liu MH, Lin CC (2020) Int J Quant. Chem 120(5):e26117

    CAS  Google Scholar 

  25. Liu MH, Liu CW (2017). J Mol Model 23(1):4

    Article  CAS  Google Scholar 

  26. Lin, Y. H.; Cheng, K. H.; Li, J. S.; Hwang, C. C.; Yeh, T. F., 28th Symposium of National Defense Technology, 2019, ND28–10810116

  27. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Becke AD (1993). J Chem Phys 98(8):5648

    Article  CAS  Google Scholar 

  29. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105(8):2999

    Article  CAS  Google Scholar 

  30. Laidler KJ, King MC (1983). J Phys Chem 87(15):2657

    Article  CAS  Google Scholar 

  31. Laidler, K. J.; Meiser, J. H.; Sanctuary, B.C., Physical chemistry 4th ed. Mifflin, Boston, p 390, 2003

  32. Su, M. D., The chemical kinetics: the concepts and 1000 questions Wu-Nan culture enterprise, Taipei, Taiwan:621–625, 2008

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Center for High-Performance Computing for their support in calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hsien Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Wu, YH., Li, JS. et al. Comparative modeling of improved synthesis of energetic dinitrobenzofuroxan (DNBF) derivatives. J Mol Model 26, 240 (2020). https://doi.org/10.1007/s00894-020-04497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04497-z

Keywords

Navigation