Skip to main content

Advertisement

Log in

Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO3. The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO3 at 0 K are 523 K and 1764.75 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012). Nat. Mater. 11:103

    Article  CAS  PubMed  Google Scholar 

  2. Reshak AH (2014). Phys. Chem. Chem. Phys. 16:10558

    Article  CAS  PubMed  Google Scholar 

  3. Bristowe NC, Varignon J, Fontaine D, Bousquet E, Ghosez P (2015). Nat. Commun. 6:6677

    Article  CAS  PubMed  Google Scholar 

  4. Abbad A, Benstaali W, Bentounes HA, Bentata S, Benmalem Y (2016). Solid State Commun. 228:36

    Article  CAS  Google Scholar 

  5. Reshak AH (2014). RSC Adv. 4:39565

    Article  CAS  Google Scholar 

  6. Ali Z, Ahmad I, Reshak AH (2013). Physica B 410:217

    Article  CAS  Google Scholar 

  7. Dar SA, Khandy SA, Islam I, Gupta DC, Srivastava V, Sakalle UK, Parrey K (2017). Chin. J. Phys. 55:1769

    Article  CAS  Google Scholar 

  8. Khandy SA, Gupta DC (2017). Mater. Chem. Phys. 198:380

    Article  CAS  Google Scholar 

  9. Dar SA, Srivastava V, Sakalle UK, Khandy SA, Gupta DC, Supercond J. Nov. Magn. https://doi.org/10.1007/s10948-017-4181-7

  10. Khandy SA, Gupta DC (2017). J. Electron. Mater. 46:5531

    Article  CAS  Google Scholar 

  11. Erum N, Iqbal MA (2017). Mater. Res. Express 4:025904

    Article  Google Scholar 

  12. Reshak AH, Stys D, Auluck S, Kityk IV (2011). Phys. Chem. Chem. Phys. 13:2945

    Article  CAS  PubMed  Google Scholar 

  13. RSC AH (2014). Adv. 4:63137

    Google Scholar 

  14. Reshak AH (2016). Phys. Chem. Chem. Phys. 6:92887

    CAS  Google Scholar 

  15. Souidi A, Bentata S, Benstaali W, Bouadjemi B, Abbad A, Lantri T (2016). Mater. Sci. Semicond. Process. 43:196A

    Article  CAS  Google Scholar 

  16. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, WIEN2k (2001) An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M (1996). Phys. Rev. Lett. 77:3865

    Article  CAS  PubMed  Google Scholar 

  18. M. Jamal, Cubic-elastic, http://www.WIEN2k.at/reg_user/unsupported/cubic-elast/, 2012

  19. Flórez M, Recio JM, Francisco E, Blanco MA, Martín Pendás A (2002). Phys. Rev. B 66:144112

    Article  CAS  Google Scholar 

  20. Khandy SA, Gupta DC (2016). RSC Adv. 6:48009

    Article  CAS  Google Scholar 

  21. Khandy SA, Gupta DC (2017). J. Magn. Magn. Mater. 441:166

    Article  CAS  Google Scholar 

  22. Khandy SA, Gupta DC (2016). RSC Adv. 6:97641

    Article  CAS  Google Scholar 

  23. Khandy SA, Gupta DC (2017). Int. J. Qua. Chem. 117(8):1–6. https://doi.org/10.1002/qua.25351

    Article  CAS  Google Scholar 

  24. Poirier P (2000) Introduction to the physics of the Earth’s interior, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Francisco E, Recio JM, Blanco MA, Martín Pendás A (1998). J. Phys. Chem. 102:1595

    Article  CAS  Google Scholar 

  26. Francisco E, Sanjurjo G, Blanco MA (2001). Phys. Rev. B 63:094107

    Article  CAS  Google Scholar 

  27. Yakoubi A, Baraka O, Bouhafs B (2012). Results Phys 2:58

    Article  CAS  Google Scholar 

  28. Khandy SA, Islam I, Ganai ZS, Gupta DC, Parrey KA (2018). J. Electron. Mater. 47:436

    Article  CAS  Google Scholar 

  29. Sahnoun O, Benziane HB, Sahnoun M, Driz M, Daul C (2013). Comput. Mater. Sci. 77:316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, A. Laref, wants to acknowledge the “Research Center of Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad Khandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandy, S.A., Islam, I., Gupta, D.C. et al. Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure. J Mol Model 24, 131 (2018). https://doi.org/10.1007/s00894-018-3666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3666-z

Keywords

Navigation