Skip to main content
Log in

Hydrogen bonds and other interactions as a response to protect doublet/octet electron structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

MP2/aug-cc-pVTZ calculations were performed for complexes linked by hydrogen bonds. Three types of proton donating species were taken into account: H2O, CCl3H, and H3O+. These calculations are supported by the natural bond orbital (NBO) method and the quantum theory of atoms in molecules (QTAIM) approach. Numerous correlations between parameters of H-bonded systems were found. The most important are those which show the response of the system on the H-bond formation; for example, the increase of polarization of the A-H bond correlates with the strength of the hydrogen bond. Similar relationships were found for the σ-hole bonds while the π-hole bonds do not follow the trends known for the hydrogen bonds.

Hydrogen bonds and other interactions as a response to protect doublet/octet electron structureᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  4. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction: evidence, nature and consequences. Wiley-VCH, New York

    Google Scholar 

  5. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  6. Grabowski SJ (ed) (2006) Hydrogen bonding — new insights. Springer, Dordrecht

    Google Scholar 

  7. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and pi-electron delocalization. Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  8. Perrin CL, Nielson JB (1997) Strong hydrogen bonds in chemistry and biology. Annu Rev Phys Chem 48:511–544

    Article  CAS  Google Scholar 

  9. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  10. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  12. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:2145–2151

    Article  Google Scholar 

  14. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak Intermolecular Interactions: σ-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  15. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, cl, Br, I). J Mol Model 19:2739–2746

    Article  CAS  Google Scholar 

  16. Clark T (2013) σ-Holes. WIREs Comput Mol Sci 3:13–20

    Article  CAS  Google Scholar 

  17. Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chem Int Ed 54:7340–7343

    Article  Google Scholar 

  18. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  20. Grabowski SJ (2014) Boron and other triel Lewis acid centers: from Hypovalency to Hypervalency. ChemPhysChem 15:2985–2993

    Article  CAS  Google Scholar 

  21. Grabowski SJ (2015) π-hole bonds: boron and aluminum Lewis acid centers. ChemPhysChem 16:1470–1479

    Article  CAS  Google Scholar 

  22. Grabowski SJ (2015) Triel bonds, π-hole-π-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules 20:11297–11316

    Article  CAS  Google Scholar 

  23. Grabowski SJ (2017) Triel bonds – complexes of boron and aluminum trihalides and trihydrides with benzene. Struct Chem 28:1163–1171

    Article  CAS  Google Scholar 

  24. Grabowski SJ (2017) Two faces of triel bonds in boron Trihalide complexes. J Comput Chem. https://doi.org/10.1002/jcc.25056

  25. Vinh-Son N, Swinnen S, Matus MH, Nguyen MT, Dixon DA (2009) The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes. Phys Chem Chem Phys 11:6339–6344

    Article  Google Scholar 

  26. Miranda CR, Ceder G (2007) Ab initio investigation of ammonia-borane complexes for hydrogen storage. J Chem Phys 126:184703

    Article  Google Scholar 

  27. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia−borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845

    Article  CAS  Google Scholar 

  28. Staubitz A, Besora M, Harvey JN, Manners I (2008) Computational analysis of amine-borane adducts as potential hydrogen storage materials with reversible hydrogen uptake. Inorg Chem 47:5910–5918

    Article  CAS  Google Scholar 

  29. Grabowski SJ (2011) Halogen bond and its counterparts: Bent’s rule explains the formation of nonbonding interactions. J Phys Chem A 115:12340–12347

    Article  CAS  Google Scholar 

  30. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  31. Grabowski SJ (2017) Hydrogen bonds, and σ-hole and π-hole bonds – mechanisms protecting doublet and octet electron structures. Phys Chem Chem Phys 19:29742–29759

    Article  CAS  Google Scholar 

  32. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor – acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  34. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of Hyperconjugation and Rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  35. Weinhold F, Klein R (2012) What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110:565–579

    Article  CAS  Google Scholar 

  36. Grabowski SJ (2013) Non-covalent interactions – QTAIM and NBO analysis. J Mol Model 19:4713–4721

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  38. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  39. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  40. Piela L (2007) Ideas of quantum chemistry. Elsevier, Amsterdam, pp 684–691

    Google Scholar 

  41. Grabowski SJ, Sokalski WA (2005) Different types of hydrogen bonds: correlation analysis of interaction energy components. J Phys Org Chem 18:779–784

    Article  CAS  Google Scholar 

  42. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–561

    Article  CAS  Google Scholar 

  43. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  44. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  45. Popelier P (2000) Atoms in molecules. An introduction. Prentice Hall, Upper Saddle River

    Google Scholar 

  46. Matta C, Boyd RJ (eds) (2007) Quantum theory of atoms in molecules: recent progress in theory and application. Wiley-VCH, Weinheim

    Google Scholar 

  47. Todd A, Keith TK (2011) AIMAll (Version 11.08.23). Gristmill Software, Overland Park aim.tkgristmill.com

    Google Scholar 

  48. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264 (and references cited therein)

    Article  CAS  Google Scholar 

  49. Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X-H· · ·π hydrogen bond. J Phys Chem A 114:7223–7229

    Article  CAS  Google Scholar 

  50. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 11:2597–2625

    Article  Google Scholar 

  51. Platts JA, Howard ST, Bracke BRF (1996) Directionality of hydrogen bonds to sulfur and oxygen. J Am Chem Soc 118:2726–2733

    Article  CAS  Google Scholar 

  52. Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electrodensity and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  53. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  54. Crabtree RH (2017) Hypervalency, secondary bonding and hydrogen bonding: silbinds under the skin. Chem Soc Rev 46:1720–1729

    Article  CAS  Google Scholar 

  55. Coulson CA (1952) Valence. Oxford University Press, Oxford

    Google Scholar 

  56. Grabowski SJ, Sokalski WA (2017) Are various σ-hole bonds steered by the same mechanisms? ChemPhysChem 18:1569–1577

    Article  CAS  Google Scholar 

  57. Grabowski SJ (2014) Tetrel bond - σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (GIC IT-588-13) and the Spanish Government MINECO/FEDER (CTQ2016-80955). Technical and human support provided by Informatikako Zerbitzu Orokora - Servicio General de Informática de la Universidad del País Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski.

Additional information

Dedicated to Professor Peter Politzer on the occasion of his 80th birthday

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, S.J. Hydrogen bonds and other interactions as a response to protect doublet/octet electron structure. J Mol Model 24, 38 (2018). https://doi.org/10.1007/s00894-017-3569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3569-4

Keywords

Navigation