Skip to main content
Log in

Discovering protein−ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein−ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein−ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein−ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  2. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ−hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  3. Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonding. Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  4. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sirimulla S, Bailey JB, Vegesna R, Narayan M (2013) Halogen interactions in protein–ligand complexes: implications of halogen bonding for rational drug design. J Chem Inf Model 53:2781–2791

    Article  CAS  PubMed  Google Scholar 

  6. Xu Z, Liu Z, Chen T, Chen T, Wang Z, Tian G, Shi J, Wang X, Lu Y, Yan X, Wang G (2011) Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem 54:5607–5611

    Article  CAS  PubMed  Google Scholar 

  7. Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM (2012) Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Amer Chem Soc 134:6810–6818

    Article  CAS  Google Scholar 

  8. Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W (2014) Halogen bond: its role beyond drug–target binding affinity for drug discovery and development. J Chem Inf Model 54:69–78

    Article  CAS  PubMed  Google Scholar 

  9. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM (2013) Organocatalysis by neutral multidentate halogen-bond donors. Angew Chemie Int Ed 52:7028–7032

    Article  CAS  Google Scholar 

  11. Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011) Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem 3:205–210

    Article  CAS  PubMed  Google Scholar 

  12. Iwaoka M, Isozumi N (2012) Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 17:7266–7283

    CAS  PubMed  Google Scholar 

  13. Beno BR, Yeung K.-S, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383−4438

    Article  CAS  PubMed  Google Scholar 

  14. Lange A, Günther M, Büttner FM, Zimmermann MO, Heidrich J, Hennig S, Zahn S, Schall C, Sievers-Engler A, Ansideri F, Koch P (2015) Targeting the gatekeeper MET146 of C-Jun N-terminal kinase 3 induces a bivalent halogen/chalcogen bond. J Am Chem Soc 137:14640–14652

    Article  CAS  PubMed  Google Scholar 

  15. Giroud M, Ivkovic J, Martignoni M, Fleuti M, Trapp N, Haap W, Kuglstatter A, Benz J, Kuhn B, Schirmeister T, Diederich F (2017) Inhibition of the cysteine protease human cathepsin L by triazine nitriles: amide··· heteroarene π-stacking interactions and chalcogen bonding in the S3 pocket. ChemMedChem. https://doi.org/10.1002/cmdc.201600563

    Article  CAS  PubMed  Google Scholar 

  16. Fick RJ, Kroner GM, Nepal B, Magnani R, Horowitz S, Houtz RL, Scheiner S, Trievel RC (2016) Sulfur–oxygen chalcogen bonding mediates AdoMet recognition in the lysine methyltransferase SET7/9. ACS Chem Biol 11:748–754

    Article  CAS  PubMed  Google Scholar 

  17. Batsanov SS (2001) Van der Waals radii of elements. Inorg Mater 37:871–885

    Article  CAS  Google Scholar 

  18. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22:1161–1172

    Article  CAS  PubMed  Google Scholar 

  19. Whittamore PR, Addie MS, Bennett SN, Birch AM, Butters M, Godfrey L, Kenny PW, Morley AD, Murray PM, Oikonomakos NG, Otterbein LR, Pannifer AD, Parker JS, Readman K, Siedlecki PS, Schofield P, Stocker A, Taylor MJ, Townsend LA, Whalley DP, Whitehouse J (2006) Novel thienopyrrole glycogen phosphorylase inhibitors: synthesis, in vitro SAR and crystallographic studies. Bioorg Med Chem Lett 16:5567–5571

    Article  CAS  PubMed  Google Scholar 

  20. Botos I, Scapozza L, Zhang D, Liotta LA, Meyer EF (1996) Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proc Natl Acad Sci 93:2749–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malmstrom J, Viklund J, Slivo C, Costa A, Maudet M, Sandelin C, Hiller G, Olsson LL, Aagaard A, Geschwindner S, Xue Y, Vasange M (2012) Synthesis and structure-activity relationship of 4-(1,3-benzothiazol-2-yl)-thiophene-2-sulfonamides as cyclin-dependent kinase 5 (Cdk5)/P25 inhibitors. Bioorg Med Chem Lett 22:5919–5923

    Article  PubMed  Google Scholar 

  22. Huang X, Cheng CC, Fischmann TO, Duca JS, Richards M, Tadikonda PK, Reddy PA, Zhao L, Arshad-Siddiqui M, Parry D, Davis N, Seghezzi W, Wiswell D, Shipps GW (2013) Structure-based design and optimization of 2-aminothiazole-4-carboxamide as a new class of CHK1 inhibitors. Bioorg Med Chem Lett 23:2590–2594

    Article  CAS  PubMed  Google Scholar 

  23. Wu J-P, Wang J, Abeywardane A, Andersen D, Emmanuel M, Gautschi E, Goldberg DR, Kashem MA, Lukas S, Mao W, Martin L, Morwick T, Moss N, Pargellis C, Patel UR, Patnaude L, Peet GW, Skow D, Snow RJ, Ward Y, Werneburg B, White A (2007) The discovery of carboline analogs as potent MAPKAP-K2 inhibitors. Bioorg Med Chem Lett 17:4664–4669

    Article  CAS  PubMed  Google Scholar 

  24. DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, Song JJ, Wei W, Hurov JB (2011) Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry 50:10764–10770

    Article  CAS  PubMed  Google Scholar 

  25. McDermott LA, Iyer P, Vernetti L, Rimer S, Sun J, Boby M, Yang T, Fioravanti M, O’Neill J, Wang L, Drakes D, Katt W, Huang Q, Cerione R (2016) Design and evaluation of novel glutaminase inhibitors. Bioorg Med Chem 24:1819–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Guo P, Zhou Y, Wang J, Chen L, Yang H, Qian X, Yang Q (2014) A crystal structure-guided rational design switching non-carbohydrate inhibitors’ specificity between two beta-GlcNAcase homologs. Sci Rep 4:6188–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kovackova S, Chang L, Bekerman E, Neveu G, Barouch-Bentov R, Chaikuad A, Heroven C, Sala M, De Jonghe S, Knapp S, Einav S, Herdewijn P (2015) Selective inhibitors of cyclin G associated kinase (GAK) as anti-hepatitis C agents. J Med Chem 58:3393–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cameron A, Read J, Tranter R, Winter VJ, Sessions RB, Brady RL, Vivas L, Easton A, Kendrick H, Croft SL, Barros D, Lavandera JL, Martin JJ, Risco F, Garcia-Ochoa S, Gamo FJ, Sanz L, Leon L, Ruiz JR, Gabarro R, Mallo A, De Las Heras FG (2004) Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. J Biol Chem 279:31429–31439

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Coulombe R, Cameron DR, Thauvette L, Massariol M-J, Amon LM, Fink D, Titolo S, Welchner E, Yoakim C, Archambault J, White PW (2004) Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J Biol Chem 279:6976–6985

    Article  CAS  PubMed  Google Scholar 

  30. Patel RA, Forinash KD, Pireddu R, Sun Y, Sun N, Martin MP, Schonbrunn E, Lawrence NJ, Sebti SM (2012) RKI-1447 is a potent inhibitor of the rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res 72:5025–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curreli F, Choudhury S, Pyatkin I, Zagorodnikov VP, Bulay AK, Altieri A, Kwon YD, Kwong PD, Debnath AK (2012) Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1. J Med Chem 55:4764–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Leon-Boenig G, Bowman KK, Feng JA, Crawford T, Everett C, Franke Y, Oh A, Stanley M, Staben ST, Starovasnik MA, Wallweber HJ, Wu J, Wu LC, Johnson AR, Hymowitz SG (2012) The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site. Structure 20:1704–1714

    Article  PubMed  Google Scholar 

  33. Zhou Y, Webber SE, Murphy DE, Li LS, Dragovich PS, Tran CV, Sun Z, Ruebsam F, Shah AM, Tsan M, Showalter RE, Patel R, Li B, Zhao Q, Han Q, Hermann T, Kissinger CR, Lebrun L, Sergeeva MV, Kirkovsky L (2008) Novel HCV NS5B polymerase inhibitors derived from 4-(1′,1′-dioxo-1′,4′-dihydro-1′λ6-benzo[1′,2′,4′]thiadiazin-3′-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 1: exploration of 7′-substitution of benzothiadiazine. Bioorg Med Chem Lett 18:1413–1418

    Article  CAS  PubMed  Google Scholar 

  34. Stsiapanava A, Olsson U, Wan M, Kleinschmidt T, Rutishauser D, Zubarev RA, Samuelsson B, Rinaldo-Matthis A, Haeggstrom JZ (2014) Binding of pro-Gly-pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. Proc Natl Acad Sci U S A 111:4227–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schimer J, Pavova M, Anders M, Pachl P, Sacha P, Cigler P, Weber J, Majer P, Rezacova P, Krausslich HG, Muller B, Konvalinka J (2015) Nat Commun 6:6461. https://doi.org/10.1038/ncomms7461

    Article  CAS  PubMed  Google Scholar 

  36. Hao Y, Blair PM, Sharma A, Mitchell DA Nair SK (2015) Insights into methyltransferase specificity and bioactivity of derivatives of the antibiotic plantazolicin. ACS Chem Biol 10:1209–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yi F, Mou TC, Dorsett KN, Volkmann RA, Menniti FS, Sprang SR, Hansen KB (2016) Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91:1316–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang L-G, Yu H-Y, Yuan C, Wang J-D, Chen L-Q, Meehan EJ, Huang Z-X, Huang M-D (2009) Crystal structures of 2-aminobenzothiazole-based inhibitors in complexes with urokinase-type plasminogen activator. Chin J Struct Chem 28:1427–1432

    CAS  Google Scholar 

  39. Matsui T, Yamane J, Mogi N, Yamaguchi H, Takemoto H, Yao M, Tanaka I (2012) Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr Sect D 68:1175–1188

    Article  CAS  Google Scholar 

  40. Ando I, Adachi T, Ogura N, Toyonaga Y, Sugimoto K, Abe H, Kamada M, Noguchi T (2012) Preclinical characterization of JTK-853, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 56:4250–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li M, Dyda F, Benhar I, Pastan I, Davies DR (1996) Crystal structure of the catalytic domain of pseudomonas exotoxin a complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci U S A 93:6902–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jirgis EN, Bashiri G, Bulloch EM, Johnston JM, Baker EN (2016) Structural views along the Mycobacterium tuberculosis MenD reaction pathway illuminate key aspects of thiamin diphosphate-dependent enzyme mechanisms. Structure 24:1167–1177

    Article  CAS  PubMed  Google Scholar 

  43. Machius M, Wynn RM, Chuang JL, Li J, Kluger R, Yu D, Tomchick DR, Brautigam CA, Chuang DT (2006) A versatile conformational switch regulates reactivity in human branched-chain alpha-ketoacid dehydrogenase. Structure 14:287–298

    Article  CAS  PubMed  Google Scholar 

  44. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-Lopez C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA (2013) How allosteric control of Staphylococcus aureus penicillin binding protein 2A enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 110:16808–16813

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by some sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:3220–2781

    Article  Google Scholar 

  46. Murray JS, Shields ZPI, Seybold PG, Politzer P (2015) Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. J Comput Sci 10:209–216

    Article  Google Scholar 

  47. Koebel MR, Cooper A, Schmadeke G, Jeon S, Narayan M, Sirimulla S (2016) S---O and S---N sulfur bonding interactions in protein−ligand complexes: empirical considerations and scoring function. J Chem Inf Model 56:2298–2309

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Gong Z, Li J, Lu T (2015) Intermolecular sulfur---oxygen interactions: theoretical and statistical investigations. J Chem Inf Model 55:2138–2153

    Article  CAS  PubMed  Google Scholar 

  49. Iwaoka M, Babe N (2015) Mining and structural characterization of S---X chalcogen bonds in protein database. Phosphorus Sulfur Silicon Relat Elem 190:1257–1264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Jane S. Murray for providing the calculations and graphics in Figs. 1 and 11 and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel O. Mitchell.

Electronic supplementary material

ESM 1

(PDF 259 kb)

ESM 2

(PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, M.O. Discovering protein−ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. J Mol Model 23, 287 (2017). https://doi.org/10.1007/s00894-017-3452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3452-3

Keywords

Navigation