Skip to main content

Advertisement

Log in

MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The diffusion coefficients of 14 n-alkanes (ranging from methane to n-tetradecane) in liquid and supercritical methanol at infinite dilution (at a pressure of 10.5 MPa and at temperatures of 299 K and 515 K) were deduced via molecular dynamics simulations. Values for the radial distribution function, coordination number, and number of hydrogen bonds were then calculated to explore the local structure of each fluid. The flexibility of the n-alkane (as characterized by the computed dihedral distribution, end-to-end distance, and radius of gyration) was found to be a major influence and hydrogen bonding to be a minor influence on the local structure. Hydrogen bonding reduces the flexibility of the n-alkane, whereas increasing the temperature enhances its flexibility, with temperature having a greater effect than hydrogen bonding on flexibility.

The flexibility of the alkane is a major influence and the hydrogen bonding is a minor influence on the first solvation shell; the coordination numbers of long-chain n-alkanes in the first solvation shell are rather low

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–n
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14a–b
Fig. 15a–b

Similar content being viewed by others

References

  1. Greiner-Schmid A, Wappmann S, Has M, Lüdemann HD (1991) Self-diffusion in the compressed fluid lower alkanes: methane, ethane, and propane. J. Chem. Phys. 94(8):5643–5649

    Article  CAS  Google Scholar 

  2. Skarmoutsos I, Guardia E, Samios J (2010) Hydrogen bond, electron donor–acceptor dimer, and residence dynamics in supercritical CO2-ethanol mixtures and the effect of hydrogen bonding on single reorientational and translational dynamics: a molecular dynamics simulation study. J. Chem. Phys. 133(1):014504

  3. Feng H, Liu X, Gao W, Chen X, Wang J, Chen L, Lüdemann H-D (2010) Evolution of self-diffusion and local structure in some amines over a wide temperature range at high pressures: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. 12(45):15007–15017

    Article  CAS  Google Scholar 

  4. Liu X, Schnell SK, Simon J-M, Bedeaux D, Kjelstrup S, Bardow A, Vlugt TJH (2011) Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. J. Phys. Chem. B 115(44):12921–12929

    Article  CAS  Google Scholar 

  5. Raptis TE, Raptis VE, Samios J (2012) Quantitative study of diffusion jumps in atomistic simulations of model gas–polymer systems. Mol. Phys. 110(11–12):1171–1178

    Article  CAS  Google Scholar 

  6. Feng H, Gao W, Nie J, Wang J, Chen X, Chen L, Liu X, Lüdemann H-D, Sun Z (2013) MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures. J. Mol. Model. 19(1):73–82

    Article  CAS  Google Scholar 

  7. Gao W, Jiao J, Feng H, Xuan X, Chen L (2013) Natures of benzene-water and pyrrole-water interactions in the forms of sigma and pi types: theoretical studies from clusters to liquid mixture. J. Mol. Model. 19(3):1273–1283

    Article  CAS  Google Scholar 

  8. Feng H, Nie J, Sun Z, Chen L (2015) Molecular dynamics simulation of self-diffusion and structure in N-methylformamide. CIESC J. 66(5):1683–1689

  9. Volkov NA, Tuzov NV, Shchekin AK (2016) Molecular dynamics study of salt influence on transport and structural properties of SDS micellar solutions. Fluid Phase Equilibr. 424:114–121

  10. Ono T, Horikawa K, Maeda Y, Ota M, Sato Y, Inomata H (2016) Dynamic properties of methanol–water mixtures at the temperatures up to 476.2 K and at high pressures via molecular dynamics simulation. Fluid Phase Equilibr. 420:30–35

  11. Xu J, Fan JF, Zhang MM, Weng PP, Lin HF (2016) Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube. J. Mol. Model. 22(5):1–12

    Article  Google Scholar 

  12. Xu M, Shi J, Feng H (2016) Molecular dynamics simulation of influence of thermostat algorithm on self-diffusion and local structure of methane. J Hainan Normal Univ. (Nat. Sci.) 29(4):407–410

  13. Feng H, Gao W, Sun Z, Lei B, Li G, Chen L (2013) Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution. J. Phys. Chem. B 117(41):12525–12534

    Article  CAS  Google Scholar 

  14. Umezawa S, Nagashima A (1992) Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical CO2 by the Taylor dispersion method. J. Supercrit. Fluids 5(4):242–250

    Article  CAS  Google Scholar 

  15. Wang J, Zhong H, Feng H, Qiu W, Chen L (2014) Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution. J. Chem. Phys. 140(10):429–435

    Google Scholar 

  16. Kalugin ON, Chaban VV, Kolesnik YV (2006) Correlation of the rotational and translational motions of methanol molecules in pure liquid methanol and in the presence of Li+ ions. Russ. J. Phys. Chem. 80(8):1273–1280

  17. Zaragoza IP, Salcedo R, Vergara J (2008) DFT: a dynamic study of the interaction of ethanol and methanol with platinum. J. Mol. Model. 15(5):447–451

    Article  Google Scholar 

  18. Chaban VV, Kalugin ON (2009) Structure and dynamics in methanol and its lithium ion solution confined by carbon nanotubes. J. Mol. Liq. 145(3):145–151

    Article  CAS  Google Scholar 

  19. Chaban VV, Kalugin ON, Habenicht FB, Prezhdo VO (2010) The influence of the rigidity of a carbon nanotube on the structure and dynamics of confined methanol. J. Phys. Soc. Jpn. 79(6):064608

    Article  Google Scholar 

  20. Lone B, Madhurima V (2011) Dielectric and conformal studies of 1-propanol and 1-butanol in methanol. J. Mol. Model. 17(4):709–719

    Article  CAS  Google Scholar 

  21. Zhu X, Sun H, Zhang D, Liu C (2011) Theoretical study on the interactions between methanol and imidazolium-based ionic liquids. J. Mol. Model. 17(8):1997–2004

    Article  CAS  Google Scholar 

  22. Sharma D, Sahoo S, Mishra BK (2014) Molecular modeling in dioxane methanol interaction. J. Mol. Model. 20(9):2408

    Article  Google Scholar 

  23. Chaban V (2015) Competitive solvation of the imidazolium cation by water and methanol. Chem. Phys. Lett. 623:76–81

    Article  CAS  Google Scholar 

  24. Voroshylova IV, Smaga SR, Lukinova EV, Chaban VV, Kalugin ON (2015) Conductivity and association of imidazolium and pyridinium based ionic liquids in methanol. J. Mol. Liq. 203:7–15

    Article  CAS  Google Scholar 

  25. Kelley MP, Yang P, Clark SB, Clark AE (2016) Structural and thermodynamic properties of the CmIII ion solvated by water and methanol. Inorg. Chem. 55(10):4992–4999

    Article  CAS  Google Scholar 

  26. Xu J, Fan JF, Zhang MM, Weng PP, Lin HF (2016) Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube. J. Mol. Model. 22(5):107

    Article  Google Scholar 

  27. Zhao S, Tian X, Ren Y, Wang J, Liu J, Ren Y (2016) A theoretical investigation of the interactions between hydroxyl-functionalized ionic liquid and water/methanol/dimethyl sulfoxide. J. Mol. Model. 22(8):195

    Article  Google Scholar 

  28. Chen SH, Evans DF, Davis HT (1983) Tracer diffusion in methanol, 1-butanol and 1-octanol from 298 to 433 K. AICHE J. 29(4):640–645

    Article  CAS  Google Scholar 

  29. Hölscher IF, Schneider GM, Ott JB (1986) Liquid–liquid phase equilibria of binary mixtures of methanol with hexane, nonane and decane at pressures up to 150 MPa. Fluid Phase Equilibr. 27:153–169

  30. Chen B, Potoff JJ, Siepmann JI (2001) Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J. Phys. Chem. B 105(15):3093–3104

    Article  CAS  Google Scholar 

  31. Bozorgmehr MR, Morsali A, Beyramabadi SA, Moghaddam FK, Pashirepour J, Shakeri M (2014) All atom molecular dynamics simulation study of polyethylene polymer in supercritical water, supercritical ethanol and supercritical methanol. J. Supercrit. Fluids 86:124–128

    Article  CAS  Google Scholar 

  32. Lemmon EW, McLinden MO, Friend DG (2009) Thermophysical properties of fluid systems. In: NIST (ed) NIST chemistry webBook: NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov/chemistry/fluid/

  33. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3):435–447

    Article  CAS  Google Scholar 

  34. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106(22):6638–6646

    Article  CAS  Google Scholar 

  35. Hurle RL, Easteal AJ, Woolf LA (1985) Self-diffusion in monohydric alcohols under pressure. Methanol, methan(2H)ol and ethanol. J. Chem. Soc. Faraday Trans. 1 81(3):769–779

  36. Karger N, Vardag T, Lüdemann HD (1990) Temperature dependence of self-diffusion in compressed monohydric alcohols. J. Chem. Phys. 93(5):3437–3444

    Article  CAS  Google Scholar 

  37. Hoffmann MM, Conradi MS (1998) Are there hydrogen bonds in supercritical methanol and ethanol? J. Phys. Chem. B 102(1):263–271

    Article  CAS  Google Scholar 

  38. Chalaris M, Samios J (1999) Hydrogen bonding in supercritical methanol. A molecular dynamics investigation. J. Phys. Chem. B 103(7):1161–1166

    Article  CAS  Google Scholar 

  39. Martí J, Padró JA, Guàrdia E (1995) Hydrogen bonding influence on the intermolecular vibrational spectra of liquid methanol. J. Mol. Liq. 64(1–2):1–12

    Article  Google Scholar 

  40. Kosztolányi T, Bakó I, Pálinkás G (2003) Hydrogen bonding in liquid methanol, methylamine, and methanethiol studied by molecular-dynamics simulations. J. Chem. Phys. 118(10):4546–4555

    Article  Google Scholar 

  41. Feng H, Gao W, Sun Z, Chen L, Lüdemann H-D, Lei B, Li G (2014) The self-diffusion and hydrogen bond interaction in neat liquid alkanols: a molecular dynamic simulation study. Mol. Simulat. 40(13):1074–1084

  42. Hou W, Yang Z (2004) Polymer physics. Chemical Industry Press, Beijing

    Google Scholar 

  43. Guttman A, Horvath J, Cooke N (1993) Influence of temperature on the sieving effect of different polymer matrixes in capillary SDS gel electrophoresis of proteins. Anal. Chem. 65(3):199–203

    Article  CAS  Google Scholar 

  44. Fu R, Li G, Feng K (2005) Polymer physics. Chemical Industry Press, Beijing

    Google Scholar 

  45. Jonsson M, Linse P (2001) Polyelectrolyte–macroion complexation. II. Effect of chain flexibility. J. Chem. Phys. 115(23):10975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hainan Province (no. 20162027), the Program of Hainan Association for Science and Technology Plans to Youth R & D Innovation (no. HAST201621), the Natural Science Foundation of Guangdong Province (no. 2015A030310176), and the Medical Science Research Foundation of Guangdong Province (no. A2015607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenfan Sun or Liuping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Gao, W., Su, L. et al. MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution. J Mol Model 23, 195 (2017). https://doi.org/10.1007/s00894-017-3366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3366-0

Keywords

Navigation